Transfinitni rekurze

Pojem dobrého usporadani

Definice: Relace < je dobrym uspofadanim na mnoziné A, pokud je Gplnym
usporadanim mnoziny A a kazda neprazdna podmnozina mnoziny A ma nejmensi prvek
vzhledem k relaci R. To znamena, Ze pro kazdou neprazdnou podmnozinu S C A

existuje prvek b € S, takovy ze pro kazdé x € S plati b < .

Priklad 1. Mnozina w s relaci < je dobrym usporadanim, protoze kazda neprazdna
podmnozina w ma nejmensi prvek.

Priklad 2. Mnozina R s relaci < neni dobrym usporadanim, protoze existuji neprazdné
podmnoziny, které nemaji nejmensi prvek (napf. interval (0, 1)).

Definice. Necht (W, X) je dobfe uspofadana mnozina a u € W. Pak striktnim
inicialnim segmentem mnoziny W vzhledem k relaci < rozumime mnozinu

s(uy={zeW:zguNz#u}.

Princip transfinitni indukce

Véta 1 (Princip transfinitni indukce). Necht (W, <) je dobfe uspofadanad mnozina.
Necht A C W je podmnozina pro kterou plati:

Yue W ((s(u) CA) = (ueA). (1)

Pak plati A = W.

Dukaz. Pfedpokladejme, ze A C W spliuje podminku (1). Dale sporem predpokladejme,
ze mnozine W'\ A je neprazdna. Podle pfedpokladu v mnoziné W \ A existuje nejmensi
prvek u. Potom ziejmé s(u) C A. Z podminky (1) tedy vyplyva, ze u € A. To je v rozporu
s predpokladem, Ze u je nejmensi prvek mnoziny W\ A. Tedy W \ A je prazdna a tedy
A=w.1

Princip transfinitni rekurze

Nejdrive si pfipomenme "Princip rekurze" pro mnozinu w. Véta zni takto: Necht A je
mnozina, f : A — A je funkce a a € A. Pak existuje pravé jedna funkce h : w — A, ktera
spliiuje podminky: () h(0) = a a (i) (Vn € w)(h(n™) = f(h(n))).

Tuto vétu Ize modifikovat nasledujicim zptsobem.

Véta 2 (Princip rekurze Il). Necht' A je mnozina a



““A={p:projistén cwjep:n— A}.

Necht f : €A — A je funkce a a € A. Pak existuje pravé jedna funkce h : w — A,
ktera splfiuje podminky:

(i) h(0) =a
(i) Vn € w)(h(n™) = f(h | n)).

Dikaz. Existence: Definujme mnozinu S jako mnozinu vSech usporadanych dvojic (n, p),

kdem € wap:n" — A je funkce spliujici:

* p(0)=a
e Prokazdé k € nplatip(k™) = f(p | k)

Ukazeme, Ze pro kazdé n € w existuje pravé jedna funkce p : n* — A takova, ze
(n,p) € 5.

Indukci podle n:

* Pron = 0: Definujeme p(0) = a. Pak (0,p) € S.

* Pfedpokladejme, Ze pro n existuje jedina funkce p, : nt — As (n,p,) € S.Pron™
definujeme p,+ : (n*)" — Atak ze por | nT = pp app(n) = f(pn). Pak
(nt,p,+) €8.

Nyni definujeme h : w — A tak, ze h(n) = p,(n), kde py, je jedina funkce s (n, p,) € S.
Tato funkce spliuje pozadované podminky.

Jednoznacnost: Necht hi, he : w — A jsou dvé funkce splnujici podminky (i) a (ii).
Indukci ukazeme, ze hi(n) = ha(n) pro véechnan € w:

* hi(0) = a = hy(0)
e Piedpokladejme hy [ n = hy | n.Pak hi(n") = f(h1 | n) = f(ha [ n) = ha(n™).

Tedy h1 = ho.

Priklad 3. Ukazeme, jak Ize predchozi vétu aplikovat na dlikaz existence tzv. Fibonacciho

posloupnosti.
Definujme A = w a funkci f : *“w — w takto:

* Prop: 0 — w (prazdnou funkci) definujme f(p) =1
* Prop:1— wdefinujme f(p) =1
* Prop:n — wkden > 2 definujme f(p) =p(n — 1) + p(n — 2)

Polozme a = 1. Podle Véty 2 existuje pravé jedna funkce h : w — w splnujici:

* h(0)=1
* Prokazdén € wplati h(n") = f(h | n)



Tato funkce h definuje Fibonacciho posloupnost:

* h(0) = 1 (prvni Fibonacciho ¢islo)

* h(1l) = f(h [ 1) = 1 (druhé Fibonacciho ¢islo)
* h2)=f(h12)=h(1)+h0)=1+1=2
* h(3)=f(h[3)=h(2)+h(1)=2+1=3
* h(4)=f(h4) =h(3)+h(2)=3+2=5
* atd.

Princip rekurze Il tedy zarucuje existenci a jednoznacnost Fibonacciho posloupnosti. B

Definice. Necht (W, <) je dobfe uspofadana mnozina.
(a) Nyni definujme funkce s : W — W a=s: W — W takto:

* Prou € W definujeme “s(u) = {z € W:z < u},
* Prou € W definujeme =s(u) = {z € W : z < u}.

(b) Je-li A dana mnozina, pak definujeme:

° <I/V14:{g (HUEW)( : s
o WA= {g:(FuecW)(g:s(u) > A)}.

Véta 3 (Princip transfinitni rekurze). Necht (W, <) je dobfe usporadana mnozina.
Necht A je mnozinaa F : =W A — A je funkce. Pak existuje pravé jedna funkce
H : W — A, ktera splnuje podminku:

H(u) = F(H | “s(u)) prokazdé uec W.

K dlikazu Véty 3 (Princip transfinitni rekurze) je tfeba prokazat existenci a jednoznacnost
funkce H.

Duikaz Véty 3 (Princip transfinitni rekurze).

Méme dobre uspofadanou mnozinu (W, <), mnozinu A a funkci F: WA — A
Hledame praveé jednu funkci H : W — A takovou, Ze pro kazdé u € W plati
H(u) = F(H | “s(u)).

1. Jednoznacnost funkce H

Predpokladejme, ze existuji dvé funkce Hy : W — A a Hy, : W — A, které obé splniuji
danou podminku: Pro kazdé uw € W: Hy(u) = F(Hy | “s(u)) Pro kazdé u € W
H(u) = F(Hy [ “s(u))

Chceme ukazat, ze Hy = Hy, tj. Hy(u) = Hy(u) pro vechna u € W. Definujme
podmnozinu K C W jako K = {u € W | Hi(u) = Ha(u)}. Pouzijeme Vétu 1 (Princip
transfinitni indukce) k dikazu, ze K = W. Musime ovéfit predpoklad Véty 1, t;.

Vue W((Ts(u) C K) = (ue K)).

Necht u € W je libovolny prvek. Predpokladejme, ze “s(u) C K. To znamena, Ze pro
kazdé x € W takové, ze x < u, plati Hy(x) = H,(x). Z tohoto predpokladu vyplyva, ze



restrikce funkci Hy a Hy na mnozinu ~s(u) jsou identické: Hy | “s(u) = Ha | “s(u).
Podle definice funkci Hy a Hy: Hy(u) = F(H; | “s(u)) Hy(u) = F(H, | “s(u))

Jelikoz Hy | “s(u) = Hy | “s(u) a F je funkce, musi platit:
F(H; | “s(u)) = F(Hy | “s(u)). Tudiz H;(u) = Hy(u), coz znamena, ze u € K.

Pfedpoklad Véty 1 je spinén, proto K = W. Tim je dokazéana jednoznacnost funkce H.

2. Existence funkce H

Existenci funkce H dokazeme konstrukci. Definujme aproximaci jako funkci h takovou,
ze: (i) dom(h) = =s(v) pro n&jaké v € W (kde =s(v) = {x € W | z < v}). (i) Pro
kazdé u € dom(h) plati h(u) = F(h | “s(u)).

Ukazeme nékolik vlastnosti téchto aproximaci:

(a) Kompatibilita aproximaci: Necht h a hy jsou dvé aproximace. Pak hi(u) = ha(u)
pro véechna u € dom(h,) N dom(hy). Dlkaz sporem: Pfedpokladejme, Ze mnozina

S = {u € dom(h;) Ndom(hs) | hi1(u) # ha(u)} je neprazdna. Jelikoz W je dobre
usporadana, existuje nejmensi prvek ug € S vzhledem k <. Protoze ug je nejmensi prvek
v S, pro viechna z < ug (a z € dom(hy) N dom(h,)) plati hy(z) = hy(x). To znamena,
ze hy [ “s(up) = ha | “s(uop). Podle definice aproximace: hi(ug) = F(h1 [ ~s(up))
hy(ug) = F(hy | “s(ug)) Protoze argumenty funkce F' jsou stejné, musi byt

hi(uo) = ha(up). To je spor s up € S. Mnozina S tedy musi byt prazdna. Tim je
kompatibilita dokazana. Z kompatibility vyplyva, Zze pokud aproximace na =s(v) existuje,
je jedina.

(b) Existence aproximace pro kazdy pocatecni segment: Pro kazdé v € W existuje
(jedind) aproximace h,, s dom(h,) = =s(v). Dlikaz provedeme transfinitni indukci podle
v € W. Necht P(v) je tvrzeni: "Existuje aproximace h, s dom(h,) = =s(v)."
Pfedpokladejme, Ze pro viechna z < v plati P(z), tj. pro kazdé = < v existuje
aproximace h, s dom(h,) = =s(z). Definujme g, = |, _, h.- Diky kompatibilité (a) je
gy funkce. Doménou (definicnim oborem) g, je

dom(g,) = U,_, dom(hs) = U,_, ~s(x) = ~s(v). Pro libovolné y € dom(g,) (tedy
y < ) plati g»(y) = hy(y). Podle definice h, jako aproximace plati

hy(y) = F(hy [ *s(y)). Jelikoz by, = g, [ “s(y),je hy | “s(y) = g, | “s(y). Tedy
a0(y) = F(gu | “s(y)). Funkce g, : “s(v) — A je tedy prvkem <" A. Mazeme
definovat hodnotu a, = F(g,).

Nyni definujme funkci h, jako h, = g, U {(v, a,)}. Defini¢nim oborem h,, je
~s(v) U {v} = Zs(v). Ovéfime, Ze h, je aproximace:

* Prou < v hy(u) = g,(u) = F(g, [ “s(u)). Jelikoz g, [ “s(u) = h, [ “s(u), plati
hy(u) = F(hy | “s(u)).
* Prou =v: h,(v) =a, = F(g,) = F(h, | “s(v)).

Tedy h,, je aproximace s dom(h,) = =s(v). Podle principu transfinitni indukce (Véta 1,
aplikovana na existenci téchto aproximaci) takova aproximace h, existuje pro kazdé



veW.

(c) Konstrukce funkce H: Definujme H = UUGW h,, kde h, je (jedind) aproximace s
dom(h,) = =s(v). Jelikoz viechny h, jsou navzajem kompatibilni, H je funkce.
Doménou H je dom(H) = |,y dom(hy) = U,y ~5(v) = W. Zbyva ovéfit, ze H
splfiuje pozadovanou podminku. Pro libovolné u € W: H(u) = hy(u) (protoze

u € dom(h,)). Podle definice h,, jako aproximace plati h,(u) = F(h, | *s(u)). Jelikoz
H je sjednocenim véech h, a h,, jsou kompatibilni, tak H | =s(z) = h; pro kazdé

xz € W.Specialné H | “s(u) = h, | “s(u). Tedy H(u) = F(H | ~s(u)). Tim je
existence funkce H dokazana.

Jelikoz jsme dokazali existenci i jednoznacnost, diikaz Véty 3 je kompletni. B

Dusledek 1. Necht' A je dana mnozina a f : *“A — A je dana funkce. Pak existuje pravé

jedna funkce h : w — A, ktera splnuje podminku

h(n) = f(h | n) pro kazdé n € w.

Dukaz Dusledku 1.

Chceme dokazat, Ze pro danou mnozinu A a danou funkci f : €““A — A existuje pravé
jedna funkce h : w — A takova, ze h(n) = f(h | n) pro kazdé n € w. Tento disledek
odvodime z Véty 3 (Princip transfinitni rekurze).

1. Volba dobie uspofadané mnoziny: Polozme (W, %) = (w, <), kde
w={0,1,2,...} je mnozina pfirozenych Cisel (v¢etné nuly, chapana jako mnozina
konecnych ordinalnich ¢isel) a < je standardni usporadani na w. Toto je dobre
usporadana mnozina, jak je uvedeno v Prikladu 1.

2. Uréeni striktnich inicialnich segment: Pro n € w je striktni inicidlni segment
“s(n) definovan jako “s(n) = {m € w | m < n}.V kontextu von Neumannovych

ordinald plati, ze ordinal n je mnozina vsech mensich ordinalg, tj.
n=4{0,1,...,n—1}.Tedy “s(n) = {0,1,...,n — 1} = n.

3. Uréeni definiéniho oboru funkce F' z Véty 3: Mnozina <" A z Véty 3 je v nasem
piipadé =“ A. Podle definice (b) plati: “YA = {g| (Fu € w)(g: “s(u) — A)}.
Dosazenim ~s(u) = u (kde u je prvek w, tedy kone¢ny ordinal) dostavame:
““A={g]| (Ju € w)(g:u— A)}. Plipomenme si definici mnoziny “ A z Véty 2
(Princip rekurze Il): <“A = {p | pro jisté n € wje p: n — A}.Vidime, ze
%wA — EOJA'

4. Definice funkce F' pro Vétu 3: V Disledku 1 mame danu funkci f : YA — A.
Polozme F = f. Jelikoz "“A = ¥ A, funkce F' ma pozadovany defini¢ni obor =“ A

a obor hodnot A4, jak vyZaduje Véta 3.

5. Aplikace Véty 3: Podle Véty 3 (Princip transfinitni rekurze) existuje praveé jedna
funkce, kterou zde oznac¢ime H : w — A, takova, ze pro kazdé n € w plati:
H(n) = F(H [ “s(n)).



6. Zavér: Dosazenim F' = f a “s(n) = n do vyse uvedené rovnosti dostavame, Ze
existuje praveé jedna funkce H : w — A takova, ze pro kazdé n € w plati:
H(n) = f(H [ n). Funkce h [ n je restrikce funkce h na mnoZzinu
{0,1,...,n — 1}, cozZ je funkce z n do A, tedy prvek <“ A. Pokud oznacime funkci
H z Véty 3 jako h, pak tato funkce h je hledanou funkdi, jejiz existence a
jednoznacnost je zarucena Vétou 3.

Tim je dikaz Duasledku 1 dokoncen. B

Véta 4 (Existence prosté poslednosti). Necht' A je dana nekone¢na mnozina. Potom
existuje prosta funkce h : w — A.

Dukaz. Necht A je dana nekonec¢na mnozina. Chceme dokéazat, Ze existuje prosta funkce
h : w — A. Kdlkazu vyuZijeme Dlsledek 1.

1. Pfiprava pro aplikaci Dusledku 1: Disledek 1 zarucuje existenci a jednoznacnost
funkce h : w — As (kde Aj; je néjakd mnozina), pokud mame funkci
fe: €Y As — As. V nasem piipadé bude mnozina A5 shodna s danou nekone¢nou
mnozinou A. Potfebujeme tedy definovat vhodnou funkci f. : ““A — A.

2. Definice pomocné funkce f.: Necht p € “ A. To znamen4, Ze p je funkce
p: k — A pro néjaké k € w. Obraz (mnozina hodnot) funkce p je
Im(p) = {p(0),p(1),...,p(k — 1)}. Jelikoz k je kone¢né ¢islo, Im(p) je kone¢na
podmnozina mnoziny A. Protoze A je nekone¢na mnozina, jeji podmnozina Im(p)
je kone¢na, tudiz rozdil A \ Im(p) je neprazdna mnozina (dokonce nekoneéna).
Abychom z mnoziny A \ Im(p) vybrali prvek definujicim zptsobem, pouzijeme
axiom vybéru. Axiom vybéru zarucuje existenci vybérové funkce
X : P(A) \ {0} — A takové, ze pro kazdou neprazdnou podmnozinu S C A plati
x(S) € S. Nyni definujeme funkci f. : €““A — A pro libovolné p € “ A takto:

fe(p) = x(A\ Im(p)).

Jelikoz A \ Im(p) je vzdy neprazdna, funkce f, je dobre definovana.

3. Aplikace Dusledku 1: Podle Dusledku 1, pro mnozinu A a funkci f.: ““A — A
definovanou vyse, existuje pravé jedna funkce h : w — A takova, ze pro kazdé

n € w plati:
h(n) = fe(h [ n).

Pfipomerime, Ze h [ n je restrikce funkce h na mnozinu {0,1,...,n — 1}, tedy
h | n je funkce zn do A. Obraz této restrikce je
Im(h [ n) = {h(0),h(1),...,h(n — 1)}. Dosazenim definice f. dostavame:

h(n) = X(A\ {A(0), A(1), .., h(n — 1)}).

4. Dukaz, Ze funkce h je prosta: Z konstrukce h(n) vyplyva, ze
h(n) € A\ {h(0),h(1),...,h(n — 1)} To znamena, zZe pro kazdé n € w plati
h(n) # h(k) pro véechna k < n. Abychom ukazali, ze h je prosta, predpokladejme,

ze h(m) = h(k) pro néjakd m, k € w. Musime ukazat, ze m = k.



.o yh(m —1)}. Ale h(m)

* Pokud by platilo k < m, pak h(k) € {h(0), h(1),
.., h(m — 1) }. To by znamenalo

bylo definovano tak, ze h(m) ¢ {h(0), h(1),...
h(m) # h(k), coz je spor.

* Pokud by platilo m < k, pak h(m) € {h(0),h(1),...,h(k —1)}. Ale h(k)
bylo definovano tak, ze h(k) ¢ {h(0),h(1),...,h(k — 1)}. To by znamenalo
h(k) # h(m), coz je opét spor.

Jedina zbyvajici moznost je m = k. Funkce h : w — A je tedy prosta.

Tim je existence prosté funkce h : w — A pro nekonecnou mnozinu A dokéazana. B

S vyuzitim Véty 4 Ize dokazat nasledujici dusledek:

Dusledek 2. Necht' A je dana mnozina. Potom A je nekone¢na, pravé kdyz existuje
prosta funkce f : A — A, ktera neni surjektivni.

Dukaz.

(=) Pokud A je nekoneéna, pak existuje prosta funkce f : A — A, ktera neni
surjektivni.

1. Pfedpokladejme, Ze mnozina A je nekonecna.

2. Podle Véty 4 (Existence prosté posloupnosti) existuje prosta funkce h : w — A.
Ozna¢me h,, = h(n) pron € w. Mnozina Hy = Im(h) = {hg, hy, hs,...} je
spocetné nekone¢na podmnozina mnoziny A. Jelikoz h je prosta, vsechny prvky h,
jsou navzajem rdzné.

3. Definujme funkci f : A — A nasledovné:

f(z) = hni1 pokud x = h, pronéjaké n € w (tj. x € Hy)
)=z pokudz € A\ Hy

4. Dikaz, Ze f je prosta (injektivni): Necht x,y € A jsou dva prvky takové, ze
f(z) = f(y). Musime ukazat, ze z = y. Rozlis$ime nékolik pfipadu:

* Pfipad1:z € Hyay € Hy. Pak x = h,, ay = hy, pro néjakd n,m € w. Podle
definice f plati f(z) = hn+1 @ f(y) = hm+1. Z f(z) = f(y) tedy plyne
hpi1 = hp,y1. Jelikoz funkce h je prosta, musi platitn + 1 = m + 1, a tedy
n =m.Ztohovyplyvaz = h, = h,, = v.

* Pfipad2:z € A\ Hyayc A\ Hy. Pak f(z) =z a f(y) =y.Z f(z) = f(y)
primo plyne x = y.

* Pfipad3:z € Hyay < A\ Hy. Pak f(z) € Hy (konkrétné f(z) = hp+1 pro
x = hy,). Naopak f(y) =y € A\ Hy. Jelikoz mnoziny Hy a A\ H 4 jsou
disjunktni, nemuze nastat f(z) = f(y). Tento pfipad tedy nemutze vést k
f(@) = £)

* Pfipad4:z € A\ Hy ay € Hy. Analogicky k Pfipadu 3, tento pfipad nemuze
vestk f(z) = f(y).

Z uvedenych pfipadl vyplyva, ze pokud f(z) = f(y), pak musi z a y oba patfit do
H 4 nebo oba do A\ Hy, av obou téchto situacich jsme odvodili z = y. Funkce f



je tedy prosta.
5. Dukaz, Ze f neni surjektivni: Ukazeme, ze prvek hg € H 4 (1. h(0)) neni prvkem
obrazu Im( f).

e Pokud z € H,, pak z = h,, pro néjaké n € w. Potom f(x) = h,,, ;. Jelikoz
n >0,jen+ 1> 1. Proto hpi1 # ho.
* Pokud z € A\ Hy, pak f(z) = . Jelikoz z ¢ H 4, plati z # hy.
Tedy pro Zadny prvek ¢ € A nenastane f(x) = hy. Prvek hg tudiz neni v obrazu
funkce f, a funkce f neni surjektivni.

Tim je prvni smér implikace dokazan.

(<) Pokud existuje prosta funkce f : A — A, ktera neni surjektivni, pak A je
nekonecna.

1. Pfedpokladejme, Ze existuje prosta funkce f : A — A, ktera neni surjektivni.

2. Tuto implikaci dokazeme kontrapozici. Kontrapozitivni tvrzeni zni: "Pokud je mnozina
A konecna, pak kazda prosta funkce f : A — A je surjektivni." Necht' A je konec¢na
mnozina. Ozna¢me pocet jejich prvkl |A| = k, kde k € w. Necht f: A — A je
prosta funkce. Obraz funkce f je mnozina Im(f) = {f(x) | « € A}. Protoze f je
prosta, zobrazuje k raznych prvkd mnoziny A na k riznych prvka v Im( ). To
znamenj, ze pocet prvk( obrazu je [Im(f)| = k. Jelikoz Im( f) je podmnozinou A a
zéroven |Im(f)| = |A| = k, musi platit Im(f) = A. Funkce f je tedy surjektivni.

3. Tim jsme ukazali, ze pokud je A konecna, pak kazda prosta funkce z A do A musi
byt surjektivni.

4. Z toho vyplyva, ze pokud existuje prosta funkce f : A — A, ktera neni surjektivni
(jak predpokladame na zac¢atku tohoto sméru), pak mnozina A nemuze byt konec¢na.
Musi tedy byt nekonecna.

Oba sméry implikace byly dokazany, ¢imz je dikaz Dusledku 2 hotov. B

Historicka poznamka (Richard Dedekind):

Véta 4 a zejména DuUsledek 2 jsou Uzce spojeny s praci némeckého matematika Richarda
Dedekinada (1831-1916). Dedekind ve své praci "Was sind und was sollen die Zahlen?" z
roku 1888 definoval nekone¢né mnoziny pravé pomoci vlastnosti popsané v Dlsledku 2.

Dedekindova definice: MnoZina A je nekoneéna (v Dedekindové smyslu), pokud
existuje prosta funkce f : A — A, ktera neni surjektivni. Ekvivalentné, mnozina A je

nekonecna, pokud je ekvipotentni se svou vlastni podmnozinou.

Tato charakterizace nekonecnych mnozin byla prikopnicka a dodnes se pouziva v teorii
mnozin. Dedekind tak ukazal, Ze nekonecnost Ize definovat Cisté mnozinové-teoreticky,
bez odkazu na pfirozena cisla nebo spocitani prvkd.

V kontextu axiomatické teorie mnozin se Dedekindova definice ukazala byt ekvivalentni s
intuitivnim chapanim nekonecnosti jako "nespocetnosti” prvkd, coz jsme pravé dokazali v
Dusledku 2.



Princip transfinitni rekurze s vyuzitim tridovych
funkci

Definice funkcionalni formule. Necht ¢(g, u) je formule teorie mnoZin. Rekneme, e
(g, u) je funkcionalni, pokud

(Vg)(Fu)p(g, u).

Definice tfidové funkce. Necht ¢(g, u) je funkcionalni formule. Pak tfidovou funkci
(nebo funkci tfidy) ® definovanou pomoci ¢ rozumime tfidu

@ = {{g,u) : p(g,u)}.
Nyni si pfipomernme tzv. Schéma axiomi nahrazeni:

Necht 9(z, y) je formule teorie mnozin. Pro kazdou mnozinu A pro kterou plati:

Vo € AQly)y(z,y),

potom existuje mnozina S obsahujici elementy y takové, zZe plati 1(x, y) pro néjaké
x e A

Tedy, jestlize (V) (3y)y(x, y), pak pro kazdou mnozinu A existuje mnozina

S = {y: Jo(z € AN B(z,p)}
Tudiz f = {(z,y) : « € ANY(z,y)} je funkce. Tj. f: A — S. Mnozina S je tedy
obrazem mnoziny A vzhledem k funkci £, tj. S = f[A].

Véta 5 (Princip transfinitni rekurze s vyuzitim tfidovych funkci). Necht ¢(z, y) je
funkcionalni formule (mUze obsahovat také parametry). Je-li dale (W, <) dobre

usporadana mnozina, potomexistuje jednoznacné urcena funkce H takova, ze
W = dom(H) a pro kazdé u € W plati:

p(H [ ~s(u), H(u)).

Dukaz. Necht' F oznacuje tfidovou funkci definovanou formuli ¢; tj. pro danou mnozinu

z, F () je jednoznacné uréena mnozina y takova, ze ¢(z, y) plati. Podminka ve vété pak
zni H(u) = F(H | “s(u)).

1. Jednoznaénost funkce H

Pfedpokladejme, Ze existuji dvé funkce Hy a Hy takové, ze dom(H;) = W,
dom(H,) = W a pro kazdé u € W plati:

* @(Hi [ “s(u), Hi(u)) (. Hi(u) = F(H1 [ “s(u)))
* o(Hy [ “s(u), Ha(uw)) (4. H2(u) = F(Hz [ “s(u)))



Definujme mnozinu K = {u € W | Hi(u) = Ha(u)}. Pouzijeme Vétu 1 (Princip
transfinitni indukce), ktera byla uvedena drive, k diikazu, ze K = W. Necht u € W je
libovolny prvek. Pfedpokladejme (jako induk¢ni predpoklad pro transfinitni indukci), ze
“s(u) C K. To znamend, ze pro kazdé x € W takové, ze x < u, plati Hy(x) = Hy(z).
Z tohoto predpokladu vyplyva, ze funkce Hy | ~“s(u) a Ha | ~s(u) jsou identické.
Oznaéme tuto funkci (ktera je mnoZinou) jako g,. Tedy g, = H1 | “s(u) = Ha | ~s(u).

Podle predpokladli o H; a H, plati:

* Hi(u) = F(gu)
* H(u) = F(gu)

Jelikoz p(z, y) je funkcionalni formule, F(gy,) je jednoznacné uréena mnozina. Proto
H;(u) = Ha(u). To znamena, ze u € K. Podle Principu transfinitni indukce (Véta 1) plati
K = W.Tudiz H; = H,. Tim je jednoznacnost funkce H dokazana.

2. Existence funkce H
Existenci funkce H dokazeme konstrukci.

Definujeme aproximaci jako funkci A (tj. h je mnozina usporadanych dvojic) takovou, Ze:
i. dom(h) = =s(v) pro n&jaké v € W. (Pfipomerime, 7e “s(v) = {z € W | z < v}).i.
Pro kazdé u € dom(h) plati p(h | =s(u), h(u)) . h(u) = F(h | <s(u))).

(a) Kompatibilita aproximaci: Necht h a hs jsou dvé aproximace. Pak hi(u) = ha(u)
pro véechna u € dom(h;) N dom(h,). Dlkaz je analogicky dikazu jednoznacnosti H.
Pfedpokladejme sporem, ze mnozina S = {z € dom(h1) Ndom(hz) | h1(z) # h2(x)}
je neprazdna. Jelikoz W je dobre usporadana, existuje nejmensi prvek ug € S. Pak pro
vsechna < ug vdom(h;) N dom(hy) plati hy(z) = ho(x), takze

h1 r <S(’UJ()) = h2 r <S(’UJ()). Oznaéme go — h1 f —<.S(U()). Pak hl(UQ) = F(go) a

hs(ug) = F(go). Z jednoznaénosti hodnoty F(gg) plyne hq(ug) = ho(ug), cozZ je spor s
tim, Ze ugp € S. Tudiz S musi byt prazdna. Z kompatibility vyplyva, Ze pokud aproximace
hy s defini¢nim oborem =s(v) existuje, je jako funkce (mnozina uspofadanych dvojic)

urcena jednoznacné.

(b) Pro kazdé v € W existuje (jedina) aproximace h, s dom(h,) = =s(v), a h, je
mnozina. Diikaz provedeme transfinitni indukci podle v € W. Necht P(v) je tvrzeni:
"Existuje aproximace h,, s dom(h,) = =s(v) a h, je mnoZina." Pfedpokladejme (indukéni
predpoklad), ze pro viechna z < v plati P(x). Tedy pro kazdé = < v existuje jedina
mnozina h,, ktera je aproximaci s dom(h,) = =s(z). Uvazujme tfidu {h, | z < v}.
Protoze ~s(v) je mnoZina a pro kazdé z € ~s(v) existuje pravé jedna takova mnozina
hz (podle indukéniho predpokladu a kompatibility), mizeme pouzit Schéma axiomu
nahrazeni. Formule ¥(z, k) je "z € <s(v) A k je aproximace h,". Schéma nahrazeni
zarucuje, ze {h, | * < v} je mnozina. Ozna¢me tuto mnozinu S,. Definujme

9y = US, = U,~, hs Podle Axiomu sjednoceni je g, mnoZina. Diky kompatibilité (a) je
gy funkce. Jeji defini¢ni obor je dom(g,) = U, _, dom(h,) = |, _, =s(z) = “s(v).

JelikoZ g, je mnozina (konkrétné funkce s definiénim oborem ~s(v)), mGzeme ji pouzit



jako argument pro tfidovou funkci F. Necht y, = F(gy,). Podle definice F (z funkcionalni
formule ) je y, jednoznaéné ur¢end mnozina. Definujme h, = g, U {(v, y,) }. Toto je
mnozina (sjednoceni dvou mnozin). Defini¢nim oborem h,, je ~s(v) U {v} = =s(v).
Snadno se ovéri, ze h,, spliuje podminku (ii) pro aproximaci:

* Prou < v, hy(u) = go(u). Protoze g, | ~s(u) je samo o sobé aproximaci h,, plati
gu(u) = F(gy | “s(u)). Jelikoz g, [ “s(u) = hy | “s(u), dostavame
hy(u) = F(h, [ ~s(u)).

* Prou =, hy(v) =y = F(gy) = F(hy [ “s(v)).

Tedy h, je aproximace s dom(h,) = =s(v) a h, je mnoZina. Podle principu transfinitni
indukce tvrzeni P(v) plati pro kazdé v € W.

(c) Konstrukce funkce H: Podle (b) pro kazdé v € W existuje jedina aproximace h,
(ktera je mnozinou) s dom(h,) = =s(v). Uvazujme tfidu {h,, | v € W}. Jelikoz W je
mnozina a pro kazdé v € W existuje pravé jedna takova mnozina h,, Schéma axiomd
nahrazeni zaruuje, ze {h, | v € W} je mnozina. Oznaéme tuto mnozinu Sy. Definujme
H = JSw = U,ew ho- Podle Axiomu sjednoceni je H mnozina. Jelikoz véechny h,, jsou
navzajem kompatibilni funkce, H je funkce. Defini¢nim oborem H je

dom(H) = U, dom(hy) = U, ~5(v) = W. Pro libovolné u € W plati

H(u) = hy(u) (protoze u € dom(h,)). Podle definice h,, jako aproximace plati

©(hy | “s(u), hy(u)). Jelikoz H je sjednocenim viech h, (pro = € W) a ty jsou
kompatibilni, plati H | =s(x) = h, pro kazdé = € W. Specialné tedy

H | =“s(u) = hy | “s(u). Z toho plyne, ze (H | ~s(u), H(u)) plati pro kazdé u € W.

Funkce H je tedy mnozina uspofadanych dvojic, dom(H) = W a spliuje danou
rekurzivni podminku. Existence je dokazana.

Tim je dikaz Véty 5 kompletni. Il

Disledek 3. Necht ¢(z, y) je funkcionalni formule. Potom existuje pravé jedna funkce F
takova, ze w = dom(F') a pro kazdé n € w plati:

©(F [ n, F(n)).

Dukaz.

Chceme dokazat, ze pro danou funkcionalni formuli ¢(z, y) existuje pravé jedna funkce
F takova, ze dom(F') = w a pro kazdé n € w plati o(F' [ n, F(n)). Tento dUsledek
odvodime pfimo z Véty 5 (Princip transfinitni rekurze s vyuzitim tridovych funkci).

1. Volba dobfe uspoiadané mnoziny pro Vétu 5: Polozme (W, <) = (w, <), kde
w={0,1,2,...} je mnozina pfirozenych cisel (chapana jako mnozina kone¢nych
ordinalnich cisel) a < je standardni usporadani na w. Jak vime (napft. Priklad 1 z

Uvodniho textu), (w, <) je dobfe uspofadana mnozina.

2. Volba funkcionalni formule pro Vétu 5: Véta 5 vyzaduje funkcionalni formuli,
kterou v jejim enunciatu oznacujeme (z, y) (nebo ¥(z,y) ¢ jinymi

metajazykovymi proménnymi pro argumenty). Dlsledek 3 nam poskytuje



funkcionalni formuli, kterou rovnéz oznacujeme p(x, y). Tuto formuli pfimo
pouzijeme. Podle predpokladu Disledku 3 je ¢(x, y) funkcionalni formule, coz
znamena, ze pro kazdou mnozinu x existuje pravé jedna mnozina y takova, ze
©(z,y) plati.

3. Aplikace Véty 5: Podle Véty 5, pro dobfe uspofadanou mnozinu (W, <) = (w, <) a
funkcionalni formuli ¢(z, y), existuje jednoznacné urcena funkce H takova, ze:

e dom(H) =W =w.
* Prokazdé u € W (tedy pro kazdé n € w) plati: o(H | ~s(u), H(u)).
4. Pfepis do terminologie Dusledku 3: Ozna¢me funkci H z Véty 5 jako F', coz je

oznaceni pouzité v Disledku 3.

* Podminka dom(H) = w se stava dom(F) = w.

* Proménna u € W odpovida n € w.

e Striktni iniciadlni segment ~s(u) prvku u € w (tedy “s(n) pron € w) je
definovan jako “s(n) = {m € w | m < n}.V kontextu von Neumannovych
ordinall plati, Ze ordinal n je mnozina vSsech mensich ordinald, tj.
n={0,1,...,n — 1}.Tedy “s(n) = n.

* Vyraz H | “s(u) se tak stava F' | n. Funkce F' | n je restrikce funkce F' na
mnozinu {0, 1,...,n — 1}. Tato restrikce je funkci s defini¢nim oborem n
(konecny ordinal), a tedy je mnozinou. M(ize tak slouzit jako prvni argument
funkcionalni formule ¢.

* Hodnota H(u) se stava F(n). Toto je mnozina, ktera slouzi jako druhy
argument .

Podminka z Véty 5 tedy zni: Pro kazdé n € w plati p(F' [ n, F(n)).

5. Zaveér: Funkce F' (ktera je funkci H z Véty 5) ma defini¢ni obor w a pro kazdé n € w
splfiuje podminku ¢ (F' | n, F(n)). Existence a jednoznacnost takové funkce F je

pfimo zarucena Vétou 5.

Tim je dikaz DUsledku 3 dokoncen.

Véta 6 (Existence tranzitivniho uzavéru). Necht' A je mnozina. Potom existuje
tranzitivni mnozina T takovd, ze A C T.

Pro dlikaz Véty 6 (Existence tranzitivniho uzavéru) si pfipomenme definici tranzitivni

mnoziny:

Definice: Mnozina X je tranzitivni, pokud pro kazdy prvek y € X plati, ze y C X (tj.
pokudy € X a z € y, pak z € X).

Dukaz:

1. Konstrukce posloupnosti mnozin (S,,),,c..: Chceme definovat posloupnost mnozin

S0, 51, S2, . . . rekurzivné takto:

b SO =A
e Spri=UShkde X ={z]Tye X(ze€y)}



Abychom formalné zarucili existenci této posloupnosti jako funkce H : w — V (kde
V je tfida vSech mnozin) takové, ze H(n) = S,,, pouzijeme Disledek 3. Dusledek 3
fika: "Necht 9 (p, y) je funkcionalni formule. Potom existuje pravé jedna funkce F'
takova, Ze w = dom(F) a pro kazdé n € w plati: (F' [ n, F(n))."

Definujme funkcionalni formuli 1(p, y) nasledovné:
¥(p,y) = (dom(p) = 0 Ay = A) V (3k € w(dom(p) = k+ 1 Ay = Jp(k)))

* Zde p je funkce, jejiz defini¢ni obor dom(p) je néjaké pfirozené Eislo n.

* Pokud n = 0 (ij. p je prazdna funkce F' | 0), pak y je jednoznacné urceno jako
A

e Pokuddom(p) =k+ 1. p=F [ (k+ 1)), pak p(k) je F(k) (pfedchozi ¢len
posloupnosti). Mnozina y = |J p(k) je jednoznacné uréena Axiomem
sjednoceni.

Formule 9 (p, y) je tedy funkcionalni.

Podle DUsledku 3 existuje pravé jedna funkce H : w — 'V takova, ze pro kazdé
n € wplati(H | n, H(n)). Oznatme S,, = H(n). Pak plati:

e Sy = H(0) = A (protoze dom(H [ 0) = 0).
¢ Spi=H(n+1) = U(H | (n+1))(n) = UH(n) = US..
Tim je korektné definovana posloupnost (S,,),cw-

2. Definice mnoziny T': Polozme T = Unew Sp=8SUSiUS2U....Aby T byla
mnozina, musime ukazat, ze {S, | n € w} je mnozina. Toto je obor hodnot funkce
H : w— V.Jelikoz dom(H) = w je mnozina, podle Schématu axioml nahrazeni je
i obor hodnot ran(H) = {S, | n € w} mnozinou. Potom T' = | Jran(H) je
mnozina podle Axiomu sjednoceni.

3. Dikaz, ze A C T Podle konstrukce Sy = A. Jelikoz T = S; U S; U S, U..., je
ziejmé, ze Sy C T.Tudiz A C T.

4. Dukaz, ze T je tranzitivni: Musime ukazat, Ze pokud x € Tay € x, paky € T.

* Necht z € T. Z definice T plyne, ze existuje néjaké n € w takové, ze x € S,,.

* Necht'y € z. Protoze z € Sy, platiy € |J Sh.

* Podle definice posloupnosti (Si)xew j€ Spe1 = U Sn.-

e Tedyy € Spi1.

* Jelikoz S,,,1 je jednou z mnozin, jejichz sjednocenim je T, plati S,,,; C T.

® Zy € Spy1aSpi1 CT vyplyva, zey € T.
Tim jsme ukazali, ze T je tranzitivni mnozinaa A C T. Mnozina T takto
zkonstruovana se nazyva tranzitivni uzavér mnoziny A, ¢asto znaceny TC(A).

Dlikaz Véty 6 je timto dokoncen. B

Cviceni na transfinitni indukci a rekurzi

Cviceni 1: Ordinalni aritmetika — S¢itani



Definujte scitani ordinalnich Cisel a 4+ 8 pomoci transfinitni rekurze podle druhého
argumentu g

lat+0=a
2.a+ (B+1) = (a+ B)+ 1 (kde B+ 1 je naslednik )
3.a+ A =J,.\(a+) pro limitni ordinal A # 0.

Dokazte pomoci transfinitni indukce (podle (), ze pro libovolné ordinaly a, B,y plati
asociativita: (a + 8) + v = a+ (B + 7).

Napovéda: Rozlisujte pfipady, kdy v = 0, 7y je naslednik, a v je limitni ordinal.

Cviceni 2: Vlastnosti dobie uspofadanych mnozin

Necht (W, <) je dobfe uspofadana mnozina. Dokazte pomoci transfinitni indukce, ze
neexistuje zadna klesajici posloupnost prvka z W délky w, tj. neexistuje funkce
f:w— Wtakova, ze f(n+ 1) < f(n) pro véechnan € w.

Napovéda: Uvazujte mnozinu
A = {x € W | neexistuje klesajici posloupnost z W zacinajici  délky w}. Ukazte,
e A=W.

Cviceni 3: Existence funkce minima

Necht (W, <) je dobfe uspofadand mnozina a A je libovolna neprazdna mnozina.
Necht g : WA — P(A) \ {0} je funkce, ktera kazdé funkci definované na striktnim
inicidlnim segmentu prvku u € W pfifadi neprazdnou podmnozinu A. Déle necht

min : P(A) \ {0} — A je funkce, ktera kazdé neprazdné podmnoziné A pfifadi jeji
prvek (predpokladejme, Ze A je dobre uspofadana, nebo pouZijte axiom vybéru k definici

min).

Definujte pomoci Véty 3 (Princip transfinitni rekurze) funkci H : W — A tak, ze
H(u) = min(g(H [ ~s(u))). Popiste, jakou funkci F' z Véty 3 byste pouZili.

Cviceni 4: Porovnani ordinalu

Dokazte pomoci transfinitni indukce, Ze pro libovolné dva ordindly a, 8 plati pravé jedna
z nasledujicich moznosti: « < 8, & = 8, nebo 8 < a. (Toto je zakon trichotomie pro

ordinaly).

Napovéda: Provedte indukci napfiklad podle . Pro dané a pak provedte indukci podle

B. VyuZzijte faktu, Ze ordinél je tranzitivni mnozina dobre usporadana relaci €.

Cviceni 5: Rank mnoziny

Pro libovolnou mnozinu z definujeme jeji rank, rank(z), pomoci transfinitni rekurze
takto:



rank(z) = | J{rank(y) + 1|y € z}

(kde rank()) = 0). UkaZte, Ze tato definice je korektni (tj. Ze ji Ize zalozZit na principu
transfinitni rekurze, napf. na universu fundovanych mnozin W F'). Dokazte pomoci
transfinitni indukce (podle struktury mnozin, tj. indukci pres relaci € na WF), ze pro
libovolné mnoziny , y plati: Pokud = € y, pak rank(z) < rank(y).

Napovéda k definici: Rekurzi Ize provést na dobre usporadané tfidé vsech mnozin podle

jejich "data narozeni". Pro dikaz vlastnosti uvazujte mnozinu
P(y) = (Vx € y)(rank(z) < rank(y)).

Vysvétlime si podrobnéji, co se mini pod univerzem fundovanych mnozin, asto
oznacovanym jako W F' nebo jen V (v kontextu Zermelo-Fraenkelovy teorie mnozin s

axiomem vybéru, ZFC).

Univerzum fundovanych mnozin (W F)

Pojem "univerzum fundovanych mnozin" odkazuje na tfidu vSéech mnozin, které Ize
"postavit" postupné od nejjednodussich zakladl zplsobem, ktery zabranuje urcitym
paradoxnim konstrukcim, jako jsou mnoziny, které by obsahovaly samy sebe (z € x)

nebo nekonecné klesajici retézce prvkd (g > 1 D 2 > .. .).

Klicovou roli zde hraje Axiom fundovanosti (nékdy nazyvany Axiom regularity).

1. Axiom fundovanosti (regularity)
Tento axiom formalné rika:
Ve(z A0 — Jyez(ynz =0))

Slovné: Kazda neprazdna mnozina x obsahuje prvek y takovy, Ze y a  nemaji zadné
spolecné prvky (jsou disjunktni). Tento prvek y se nékdy nazyva €-minimalni prvek
mnoziny .

Dusledky Axiomu fundovanosti:

e 74dna mnozina nem(ize obsahovat sama sebe (neplati z € z). Kdyby ano, pak
mnozina {z} by byla neprazdna, ale jeji jediny prvek x by mél s {z} spole¢ny prvek
x, coz by bylo ve sporu s axiomem.

* Neexistuji fetézce typux € y € x.

* Obecnégji, neexistuji zadné nekonecné klesajici posloupnosti vzhledem k relaci €:
o D 1 D T2 O .... Pokud by takova posloupnost existovala, mnozina
X = {zg, 1, 9, ...} by byla neprazdna. Kazdy prvek z,, € X by viak mél
neprazdny prinik s X (protoze xp+1 € T a xp+1 € X), coz by bylo ve sporu s
axiomem.

Axiom fundovanosti tedy zajistuje, Ze relace "byti prvkem” (€) je dobfe fundovana na
jakékoli mnoziné. To znameng, Ze kazda neprazdna mnozina ma €-minimalni prvek (ve

smyslu axiomu) a neexistuji nekonecné €-klesajici posloupnosti.



2. Kumulativni hierarchie mnozin (V)

Univerzum fundovanych mnozin W F' se konstruuje "zdola nahoru" pomoci transfinitni
rekurze pres ordinalni Cisla. Definujeme tfidu (indexovanou ordinaly) mnozin V,:

e Zakladni krok: V|, = () (za¢iname s prazdnou mnozinou).

* Naslednicky krok: V.1 = P(V,) (mnozina viech podmnozin pfedchozi Grovné;
P(X) znadi potenéni mnozinu X).

¢ Limitni krok: V), = Uﬁ</\ Vg pro limitni ordinal A (sjednoceni véech piedchozich

arovni).

Priklady prvnich trovni:

* Vo=0

* Vi=PW)="P0) = {0}

* Va=PW) =P{0}) = {0,{0}}

* Vs =P(V2) =P{0,{0}}) = {0, {0}, {{0}},{0,{0}}}

* Vo= U, Vn Tato mnozina obsahuje viechny dédicné konecné mnoziny
(mnoziny, jejichz prvky jsou dédicné konecné, atd.). V,, slouzi jako model pro teorii

mnozin bez axiomu nekonec¢na.
Vlastnosti trovni V,:

1. Kazda V,, je mnozina (to Ize dokazat transfinitni indukci; pro Vj je to ziejmé, P(V,)
je mnozina, pokud V,, je mnozina (Axiom potencni mnoziny), a U5<A Vs je mnozina,
pokud kazdé V3 je mnoZina a tfida {Vs | B < A} je indexovana mnozinou A a Ize
pouzit Axiom sjednoceni a Axiom nahrazeni).

2. Kazda V, je tranzitivni mnozina. (Pokud z € V,, ay € z, paky € V).

3. Hierarchie je kumulativni (rostouci): Pokud @ < 3, pak V,, C V3.

4. Pokud o < B, pak V,, € Vj3 (konkrétné V,, € V., protoze V,, C V,,, tedy
Va € P(Va) = Vat).

3. Rang (hodnost) mnoziny

Pro kazdou mnozinu z, ktera patfi do néjaké urovné V,, mGzeme definovat jeji rang
(nékdy téz hodnost):

rank(z) = min{a | z € V, 1}

Ekvivalentné, rank(z) je nejmensi ordinal « takovy, ze  C V. Definice rangu, kterou
jste uvedli ve Cvi¢eni 5 (rank(z) = (J{rank(y) + 1 | y € z}), je rekurzivni definici, ktera
je s touto ekvivalentni pro fundované mnoziny.

e rank(()) = 0 (protoze ) € V; = Vi11)
* Pokud z € y, pak rank(z) < rank(y).

4. Univerzum fundovanych mnozin (W F’)



Univerzum fundovanych mnozin W F' (nékdy oznacované jen V) je definovano jako
sjednoceni vSech Urovni kumulativni hierarchie:

WF=V= ] Va

acOn

kde On je tfida vsech ordinalnich Cisel.
Dilezité body o W F*:

e WF (nebo V) je vlastni tfida, nikoli mnozina. Obsahuje vSechny "dobfe chovajici
se" mnoziny.

* Vztah k Axiomu fundovanosti: Axiom fundovanosti je ekvivalentni tvrzeni, ze
kazda mnozina je fundovanag, tj. kazdd mnozina patfi do W F. V systému ZFC se
tedy predpoklada, ze trida vsech mnozin je pravé W F'. Tedy V (jako tfida vsech

mnozin v ZFC) se rovna | J V,. Jinymi slovy, kazdd mnozina ma rang.

acOn

5. Vyznam pro transfinitni indukci a rekurzi

Struktura W F' jako kumulativni hierarchie indexované ordinaly je zasadni pro teorii

mnozin:

v wvs

* Poskytuje "meéritko slozitosti" mnozin: Rang mnoziny udava, v jaké "fazi"
konstrukce vesmiru se dana mnozina objevuje. Mnoziny s mensim rangem jsou
"jednodussi” nebo "dfive sestrojené”.

¢ Umoznuje dukazy transfinitni indukci “na vSéech mnozinach": Mnoho tvrzeni o
vSech mnozinach Ize dokazat transfinitni indukci podle rangu mnozin.

* Umoziuje definice transfinitni rekurzi “na vSech mnozinach": Funkce, jejichz
definicnim oborem je tfida vSech mnozin, Ize definovat rekurzi podle rangu. Definice
rangu ve vasem Cviceni 5 je pfikladem takové rekurze (definujeme rank(z) na

zakladé rangl prvkl y € x, které maji mensi rang).

Strucné feceno, W F' je predstava vesmiru mnozin, kde je vée postaveno systematicky od
prazdné mnoziny pomoci operace potencni mnoziny a sjednoceni na limitnich krocich,
coz zajistuje dobrou fundovanost a vylucuje patologické pripady. Axiom fundovanosti
postuluje, ze vsechny mnoziny, se kterymi v ZFC pracujeme, do tohoto fundovaného

univerza patfi. Cvi¢eni 5 o rangu mnoziny se opira pravé o tuto strukturu.



