
Transfinitní rekurze

Pojem dobrého uspořádání
Definice: Relace  je dobrým uspořádáním na množině , pokud je úplným
uspořádáním množiny  a každá neprázdná podmnožina množiny  má nejmenší prvek
vzhledem k relaci . To znamená, že pro každou neprázdnou podmnožinu 
existuje prvek , takový že pro každé  platí .

Příklad 1. Množina  s relací  je dobrým uspořádáním, protože každá neprázdná
podmnožina  má nejmenší prvek.

Příklad 2. Množina  s relací  není dobrým uspořádáním, protože existují neprázdné
podmnožiny, které nemají nejmenší prvek (např. interval ).

Definice. Nechť  je dobře uspořádaná množina a . Pak striktním
iniciálním segmentem množiny  vzhledem k relaci  rozumíme množinu

Princip transfinitní indukce
Věta 1 (Princip transfinitní indukce). Nechť  je dobře uspořádaná množina.
Nechť  je podmnožina pro kterou platí:

Pak platí .

Důkaz. Předpokládejme, že  splňuje podmínku (1). Dále sporem předpokládejme,
že množine  je neprázdná. Podle předpokladu v množině  existuje nejmenší
prvek . Potom zřejmě . Z podmínky (1) tedy vyplývá, že . To je v rozporu
s předpokladem, že  je nejmenší prvek množiny . Tedy  je prázdná a tedy

. 

Princip transfinitní rekurze
Nejdříve si připomeňme "Princip rekurze" pro množinu . Věta zní takto: Nechť  je
množina,  je funkce a . Pak existuje právě jedna funkce , která
splňuje podmínky: (i)  a (ii) ( .

Tuto větu lze modifikovat následujícím způsobem.

Věta 2 (Princip rekurze II). Nechť  je množina a
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Nechť  je funkce a . Pak existuje právě jedna funkce ,
která splňuje podmínky:

(i) 

a

(ii) ( .

Důkaz. Existence: Definujme množinu  jako množinu všech uspořádaných dvojic ,
kde  a  je funkce splňující:

Pro každé  platí 

Ukážeme, že pro každé  existuje právě jedna funkce  taková, že
.

Indukcí podle :

Pro : Definujeme . Pak .
Předpokládejme, že pro  existuje jediná funkce  s . Pro 
definujeme  tak, že  a . Pak

.

Nyní definujeme  tak, že , kde  je jediná funkce s .
Tato funkce splňuje požadované podmínky.

Jednoznačnost: Nechť  jsou dvě funkce splňující podmínky (i) a (ii).
Indukcí ukážeme, že  pro všechna :

Předpokládejme . Pak .

Tedy . 

Příklad 3. Ukážeme, jak lze předchozí větu aplikovat na důkaz existence tzv. Fibonacciho
posloupnosti.

Definujme  a funkci  takto:

Pro  (prázdnou funkci) definujme 
Pro  definujme 
Pro  kde  definujme 

Položme . Podle Věty 2 existuje právě jedna funkce  splňující:

Pro každé  platí 
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Tato funkce  definuje Fibonacciho posloupnost:

 (první Fibonacciho číslo)
 (druhé Fibonacciho číslo)

atd.

Princip rekurze II tedy zaručuje existenci a jednoznačnost Fibonacciho posloupnosti. 

Definice. Nechť  je dobře uspořádaná množina.

(a) Nyní definujme funkce  a  takto:

Pro  definujeme ,
Pro  definujeme .

(b) Je-li  daná množina, pak definujeme:

,
.

Věta 3 (Princip transfinitní rekurze). Nechť  je dobře uspořádaná množina.
Nechť  je množina a  je funkce. Pak existuje právě jedna funkce

, která splňuje podmínku:

K důkazu Věty 3 (Princip transfinitní rekurze) je třeba prokázat existenci a jednoznačnost
funkce .

Důkaz Věty 3 (Princip transfinitní rekurze).

Máme dobře uspořádanou množinu , množinu  a funkci .
Hledáme právě jednu funkci  takovou, že pro každé  platí

.

1. Jednoznačnost funkce H

Předpokládejme, že existují dvě funkce  a , které obě splňují
danou podmínku: Pro každé :  Pro každé :

Chceme ukázat, že , tj.  pro všechna . Definujme
podmnožinu  jako . Použijeme Větu 1 (Princip
transfinitní indukce) k důkazu, že . Musíme ověřit předpoklad Věty 1, tj.

.

Nechť  je libovolný prvek. Předpokládejme, že . To znamená, že pro
každé  takové, že , platí . Z tohoto předpokladu vyplývá, že

h
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h(1) = f(h ↾ 1) = 1

h(2) = f(h ↾ 2) = h(1) + h(0) = 1 + 1 = 2

h(3) = f(h ↾ 3) = h(2) + h(1) = 2 + 1 = 3

h(4) = f(h ↾ 4) = h(3) + h(2) = 3 + 2 = 5

■
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restrikce funkcí  a  na množinu  jsou identické: .

Podle definice funkcí  a :  

Jelikož  a  je funkce, musí platit:
. Tudíž , což znamená, že .

Předpoklad Věty 1 je splněn, proto . Tím je dokázána jednoznačnost funkce .

2. Existence funkce H

Existenci funkce  dokážeme konstrukcí. Definujme aproximaci jako funkci  takovou,
že: (i)  pro nějaké  (kde ). (ii) Pro
každé  platí .

Ukážeme několik vlastností těchto aproximací:

(a) Kompatibilita aproximací: Nechť  a  jsou dvě aproximace. Pak 
pro všechna . Důkaz sporem: Předpokládejme, že množina

 je neprázdná. Jelikož  je dobře
uspořádaná, existuje nejmenší prvek  vzhledem k . Protože  je nejmenší prvek
v , pro všechna  (a ) platí . To znamená,
že . Podle definice aproximace: 

 Protože argumenty funkce  jsou stejné, musí být
. To je spor s . Množina  tedy musí být prázdná. Tím je

kompatibilita dokázána. Z kompatibility vyplývá, že pokud aproximace na  existuje,
je jediná.

(b) Existence aproximace pro každý počáteční segment: Pro každé  existuje
(jediná) aproximace  s . Důkaz provedeme transfinitní indukcí podle

. Nechť  je tvrzení: "Existuje aproximace  s ."
Předpokládejme, že pro všechna  platí , tj. pro každé  existuje
aproximace  s . Definujme . Díky kompatibilitě (a) je

 funkce. Doménou (definičním oborem)  je
. Pro libovolné  (tedy

) platí . Podle definice  jako aproximace platí
. Jelikož , je . Tedy
. Funkce  je tedy prvkem . Můžeme

definovat hodnotu .

Nyní definujme funkci  jako . Definičním oborem  je
. Ověříme, že  je aproximace:

Pro : . Jelikož , platí
.

Pro : .

Tedy  je aproximace s . Podle principu transfinitní indukce (Věta 1,
aplikovaná na existenci těchto aproximací) taková aproximace  existuje pro každé
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.

(c) Konstrukce funkce H: Definujme , kde  je (jediná) aproximace s
. Jelikož všechny  jsou navzájem kompatibilní,  je funkce.

Doménou  je . Zbývá ověřit, že 
splňuje požadovanou podmínku. Pro libovolné :  (protože

). Podle definice  jako aproximace platí . Jelikož
 je sjednocením všech  a  jsou kompatibilní, tak  pro každé

. Speciálně . Tedy . Tím je
existence funkce  dokázána.

Jelikož jsme dokázali existenci i jednoznačnost, důkaz Věty 3 je kompletní. 

Důsledek 1. Nechť  je daná množina a  je daná funkce. Pak existuje právě
jedna funkce , která splňuje podmínku

Důkaz Důsledku 1.

Chceme dokázat, že pro danou množinu  a danou funkci  existuje právě
jedna funkce  taková, že  pro každé . Tento důsledek
odvodíme z Věty 3 (Princip transfinitní rekurze).

1. Volba dobře uspořádané množiny: Položme , kde
 je množina přirozených čísel (včetně nuly, chápaná jako množina

konečných ordinálních čísel) a  je standardní uspořádání na . Toto je dobře
uspořádaná množina, jak je uvedeno v Příkladu 1.

2. Určení striktních iniciálních segmentů: Pro  je striktní iniciální segment
 definován jako . V kontextu von Neumannových

ordinálů platí, že ordinál  je množina všech menších ordinálů, tj.
. Tedy .

3. Určení definičního oboru funkce  z Věty 3: Množina  z Věty 3 je v našem
případě . Podle definice (b) platí: .
Dosazením  (kde  je prvek , tedy konečný ordinál) dostáváme:

. Připomeňme si definici množiny  z Věty 2
(Princip rekurze II): . Vidíme, že

.

4. Definice funkce  pro Větu 3: V Důsledku 1 máme dánu funkci .
Položme . Jelikož , funkce  má požadovaný definiční obor 
a obor hodnot , jak vyžaduje Věta 3.

5. Aplikace Věty 3: Podle Věty 3 (Princip transfinitní rekurze) existuje právě jedna
funkce, kterou zde označíme , taková, že pro každé  platí:

.
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6. Závěr: Dosazením  a  do výše uvedené rovnosti dostáváme, že
existuje právě jedna funkce  taková, že pro každé  platí:

. Funkce  je restrikce funkce  na množinu
, což je funkce z  do , tedy prvek . Pokud označíme funkci

 z Věty 3 jako , pak tato funkce  je hledanou funkcí, jejíž existence a
jednoznačnost je zaručena Větou 3.

Tím je důkaz Důsledku 1 dokončen. 

Věta 4 (Existence prosté poslednosti). Nechť  je daná nekonečná množina. Potom
existuje prostá funkce .

Důkaz. Nechť  je daná nekonečná množina. Chceme dokázat, že existuje prostá funkce
. K důkazu využijeme Důsledek 1.

1. Příprava pro aplikaci Důsledku 1: Důsledek 1 zaručuje existenci a jednoznačnost
funkce  (kde  je nějaká množina), pokud máme funkci

. V našem případě bude množina  shodná s danou nekonečnou
množinou . Potřebujeme tedy definovat vhodnou funkci .

2. Definice pomocné funkce : Nechť . To znamená, že  je funkce
 pro nějaké . Obraz (množina hodnot) funkce  je

. Jelikož  je konečné číslo,  je konečná
podmnožina množiny . Protože  je nekonečná množina, její podmnožina 
je konečná, tudíž rozdíl  je neprázdná množina (dokonce nekonečná).
Abychom z množiny  vybrali prvek definujícím způsobem, použijeme
axiom výběru. Axiom výběru zaručuje existenci výběrové funkce

 takové, že pro každou neprázdnou podmnožinu  platí
. Nyní definujeme funkci  pro libovolné  takto:

Jelikož  je vždy neprázdná, funkce  je dobře definovaná.

3. Aplikace Důsledku 1: Podle Důsledku 1, pro množinu  a funkci 
definovanou výše, existuje právě jedna funkce  taková, že pro každé

 platí:

Připomeňme, že  je restrikce funkce  na množinu , tedy
 je funkce z  do . Obraz této restrikce je

. Dosazením definice  dostáváme:

4. Důkaz, že funkce  je prostá: Z konstrukce  vyplývá, že
. To znamená, že pro každé  platí

 pro všechna . Abychom ukázali, že  je prostá, předpokládejme,
že  pro nějaká . Musíme ukázat, že .

F = f ≺s(n) = n

H : ω → A n ∈ ω

H(n) = f(H ↾ n) h ↾ n h

{0, 1, … , n − 1} n A ∈ωA

H h h

■
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h : ω → A

h : ω → As As

fc : ∈ωAs → As As

A fc : ∈ωA → A

fc p ∈ ∈ωA p

p : k → A k ∈ ω p

Im(p) = {p(0), p(1), … , p(k − 1)} k Im(p)

A A Im(p)

A ∖ Im(p)

A ∖ Im(p)

χ : P(A) ∖ {∅} → A S ⊆ A

χ(S) ∈ S fc : ∈ωA → A p ∈ ∈ωA

fc(p) = χ(A ∖ Im(p)).

A ∖ Im(p) fc

A fc : ∈ωA → A

h : ω → A

n ∈ ω

h(n) = fc(h ↾ n).

h ↾ n h {0, 1, … , n − 1}

h ↾ n n A

Im(h ↾ n) = {h(0), h(1), … , h(n − 1)} fc

h(n) = χ(A ∖ {h(0), h(1), … , h(n − 1)}).

h h(n)

h(n) ∈ A ∖ {h(0), h(1), … , h(n − 1)} n ∈ ω

h(n) ≠ h(k) k < n h

h(m) = h(k) m, k ∈ ω m = k



Pokud by platilo , pak . Ale 
bylo definováno tak, že . To by znamenalo

, což je spor.
Pokud by platilo , pak . Ale 
bylo definováno tak, že . To by znamenalo

, což je opět spor.
Jediná zbývající možnost je . Funkce  je tedy prostá.

Tím je existence prosté funkce  pro nekonečnou množinu  dokázána. 

S využitím Věty 4 lze dokázat následující důsledek:

Důsledek 2. Nechť  je daná množina. Potom  je nekonečná, právě když existuje
prostá funkce , která není surjektivní.

Důkaz.

 Pokud  je nekonečná, pak existuje prostá funkce , která není
surjektivní.

1. Předpokládejme, že množina  je nekonečná.

2. Podle Věty 4 (Existence prosté posloupnosti) existuje prostá funkce .
Označme  pro . Množina  je
spočetně nekonečná podmnožina množiny . Jelikož  je prostá, všechny prvky 
jsou navzájem různé.

3. Definujme funkci  následovně:

4. Důkaz, že  je prostá (injektivní): Nechť  jsou dva prvky takové, že
. Musíme ukázat, že . Rozlišíme několik případů:

Případ 1:  a . Pak  a  pro nějaká . Podle
definice  platí  a . Z  tedy plyne

. Jelikož funkce  je prostá, musí platit , a tedy
. Z toho vyplývá .

Případ 2:  a . Pak  a . Z 
přímo plyne .
Případ 3:  a . Pak  (konkrétně  pro

). Naopak . Jelikož množiny  a  jsou
disjunktní, nemůže nastat . Tento případ tedy nemůže vést k

.
Případ 4:  a . Analogicky k Případu 3, tento případ nemůže
vést k .

Z uvedených případů vyplývá, že pokud , pak musí  a  oba patřit do
 nebo oba do , a v obou těchto situacích jsme odvodili . Funkce 

k < m h(k) ∈ {h(0), h(1), … , h(m − 1)} h(m)

h(m) ∉ {h(0), h(1), … , h(m − 1)}

h(m) ≠ h(k)

m < k h(m) ∈ {h(0), h(1), … , h(k − 1)} h(k)

h(k) ∉ {h(0), h(1), … , h(k − 1)}

h(k) ≠ h(m)

m = k h : ω → A

h : ω → A A ■

A A

f : A → A

(⇒) A f : A → A

A

h : ω → A

hn = h(n) n ∈ ω HA = Im(h) = {h0, h1, h2, …}

A h hn

f : A → A

f(x) = {hn+1 pokud x = hn pro nějaké n ∈ ω (tj. x ∈ HA)
x pokud x ∈ A ∖ HA

f x, y ∈ A

f(x) = f(y) x = y

x ∈ HA y ∈ HA x = hn y = hm n, m ∈ ω

f f(x) = hn+1 f(y) = hm+1 f(x) = f(y)

hn+1 = hm+1 h n + 1 = m + 1

n = m x = hn = hm = y

x ∈ A ∖ HA y ∈ A ∖ HA f(x) = x f(y) = y f(x) = f(y)

x = y

x ∈ HA y ∈ A ∖ HA f(x) ∈ HA f(x) = hn+1

x = hn f(y) = y ∈ A ∖ HA HA A ∖ HA

f(x) = f(y)

f(x) = f(y)

x ∈ A ∖ HA y ∈ HA

f(x) = f(y)

f(x) = f(y) x y

HA A ∖ HA x = y f



je tedy prostá.
5. Důkaz, že  není surjektivní: Ukážeme, že prvek  (tj. ) není prvkem

obrazu .

Pokud , pak  pro nějaké . Potom . Jelikož
, je . Proto .

Pokud , pak . Jelikož , platí .
Tedy pro žádný prvek  nenastane . Prvek  tudíž není v obrazu
funkce , a funkce  není surjektivní.

Tím je první směr implikace dokázán.

 Pokud existuje prostá funkce , která není surjektivní, pak  je
nekonečná.

1. Předpokládejme, že existuje prostá funkce , která není surjektivní.
2. Tuto implikaci dokážeme kontrapozicí. Kontrapozitivní tvrzení zní: "Pokud je množina

 konečná, pak každá prostá funkce  je surjektivní." Nechť  je konečná
množina. Označme počet jejích prvků , kde . Nechť  je
prostá funkce. Obraz funkce  je množina . Protože  je
prostá, zobrazuje  různých prvků množiny  na  různých prvků v . To
znamená, že počet prvků obrazu je . Jelikož  je podmnožinou  a
zároveň , musí platit . Funkce  je tedy surjektivní.

3. Tím jsme ukázali, že pokud je  konečná, pak každá prostá funkce z  do  musí
být surjektivní.

4. Z toho vyplývá, že pokud existuje prostá funkce , která není surjektivní
(jak předpokládáme na začátku tohoto směru), pak množina  nemůže být konečná.
Musí tedy být nekonečná.

Oba směry implikace byly dokázány, čímž je důkaz Důsledku 2 hotov. 

Historická poznámka (Richard Dedekind):

Věta 4 a zejména Důsledek 2 jsou úzce spojeny s prací německého matematika Richarda
Dedekinada (1831-1916). Dedekind ve své práci "Was sind und was sollen die Zahlen?" z
roku 1888 definoval nekonečné množiny právě pomocí vlastnosti popsané v Důsledku 2.

Dedekindova definice: Množina  je nekonečná (v Dedekindově smyslu), pokud
existuje prostá funkce , která není surjektivní. Ekvivalentně, množina  je
nekonečná, pokud je ekvipotentní se svou vlastní podmnožinou.

Tato charakterizace nekonečných množin byla průkopnická a dodnes se používá v teorii
množin. Dedekind tak ukázal, že nekonečnost lze definovat čistě množinově-teoreticky,
bez odkazu na přirozená čísla nebo spočítání prvků.

V kontextu axiomatické teorie množin se Dedekindova definice ukázala být ekvivalentní s
intuitivním chápáním nekonečnosti jako "nespočetnosti" prvků, což jsme právě dokázali v
Důsledku 2.

f h0 ∈ HA h(0)

Im(f)

x ∈ HA x = hn n ∈ ω f(x) = hn+1

n ≥ 0 n + 1 ≥ 1 hn+1 ≠ h0

x ∈ A ∖ HA f(x) = x x ∉ HA x ≠ h0

x ∈ A f(x) = h0 h0

f f

(⇐) f : A → A A

f : A → A

A f : A → A A

|A| = k k ∈ ω f : A → A

f Im(f) = {f(x) ∣ x ∈ A} f

k A k Im(f)

|Im(f)| = k Im(f) A

|Im(f)| = |A| = k Im(f) = A f

A A A

f : A → A

A

■

A

f : A → A A



Princip transfinitní rekurze s využitím třídových
funkcí
Definice funkcionální formule. Nechť  je formule teorie množin. Řekneme, že

 je funkcionální, pokud

Definice třídové funkce. Nechť  je funkcionální formule. Pak třídovou funkcí
(nebo funkcí třídy)  definovanou pomocí  rozumíme třídu

Nyní si připomeňme tzv. Schéma axiomů nahrazení:

Nechť  je formule teorie množin. Pro každou množinu  pro kterou platí:

potom existuje množina  obsahující elementy  takové, že platí  pro nějaké
.

Tedy, jestliže , pak pro každou množinu  existuje množina

Tudíž  je funkce. Tj. . Množina  je tedy
obrazem množiny  vzhledem k funkci , tj. .

Věta 5 (Princip transfinitní rekurze s využitím třídových funkcí). Nechť  je
funkcionální formule (může obsahovat také parametry). Je-li dále  dobře
uspořádaná množina, potomexistuje jednoznačně určená funkce  taková, že

 a pro každé  platí:

Důkaz. Nechť  označuje třídovou funkci definovanou formulí ; tj. pro danou množinu
,  je jednoznačně určená množina  taková, že  platí. Podmínka ve větě pak

zní .

1. Jednoznačnost funkce 
Předpokládejme, že existují dvě funkce  a  takové, že ,

 a pro každé  platí:

 (tj. )
 (tj. )

φ(g, u)

φ(g, u)

(∀g)(∃!u)φ(g, u).

φ(g, u)

Φ φ

Φ = {⟨g, u⟩ : φ(g, u)}.

ψ(x, y) A

∀x ∈ A(∃!y)ψ(x, y),

S y ψ(x, y)

x ∈ A

(∀x)(∃!y)ψ(x, y) A

S = {y : ∃x(x ∈ A ∧ ψ(x, y))}.

f = {⟨x, y⟩ : x ∈ A ∧ ψ(x, y)} f : A → S S

A f S = f[A]

φ(x, y)

(W ,⪯)

H

W = dom(H) u ∈ W

φ(H ↾ ≺s(u), H(u)).

F φ

x F(x) y φ(x, y)

H(u) = F(H ↾ ≺s(u))

H

H1 H2 dom(H1) = W

dom(H2) = W u ∈ W

φ(H1 ↾ ≺s(u), H1(u)) H1(u) = F(H1 ↾ ≺s(u))

φ(H2 ↾ ≺s(u), H2(u)) H2(u) = F(H2 ↾ ≺s(u))



Definujme množinu . Použijeme Větu 1 (Princip
transfinitní indukce), která byla uvedena dříve, k důkazu, že . Nechť  je
libovolný prvek. Předpokládejme (jako indukční předpoklad pro transfinitní indukci), že

. To znamená, že pro každé  takové, že , platí .
Z tohoto předpokladu vyplývá, že funkce  a  jsou identické.
Označme tuto funkci (která je množinou) jako . Tedy .

Podle předpokladů o  a  platí:

Jelikož  je funkcionální formule,  je jednoznačně určená množina. Proto
. To znamená, že . Podle Principu transfinitní indukce (Věta 1) platí

. Tudíž . Tím je jednoznačnost funkce  dokázána.

2. Existence funkce 
Existenci funkce  dokážeme konstrukcí.

Definujeme aproximaci jako funkci  (tj.  je množina uspořádaných dvojic) takovou, že:
i.  pro nějaké . (Připomeňme, že ). ii.
Pro každé  platí  (tj. ).

(a) Kompatibilita aproximací: Nechť  a  jsou dvě aproximace. Pak 
pro všechna . Důkaz je analogický důkazu jednoznačnosti .
Předpokládejme sporem, že množina 
je neprázdná. Jelikož  je dobře uspořádaná, existuje nejmenší prvek . Pak pro
všechna  v  platí , takže

. Označme . Pak  a
. Z jednoznačnosti hodnoty  plyne , což je spor s

tím, že . Tudíž  musí být prázdná. Z kompatibility vyplývá, že pokud aproximace
 s definičním oborem  existuje, je jako funkce (množina uspořádaných dvojic)

určena jednoznačně.

(b) Pro každé  existuje (jediná) aproximace  s , a  je
množina. Důkaz provedeme transfinitní indukcí podle . Nechť  je tvrzení:
"Existuje aproximace  s  a  je množina." Předpokládejme (indukční
předpoklad), že pro všechna  platí . Tedy pro každé  existuje jediná
množina , která je aproximací s . Uvažujme třídu .
Protože  je množina a pro každé  existuje právě jedna taková množina

 (podle indukčního předpokladu a kompatibility), můžeme použít Schéma axiomů
nahrazení. Formule  je " ". Schéma nahrazení
zaručuje, že  je množina. Označme tuto množinu . Definujme

. Podle Axiomu sjednocení je  množina. Díky kompatibilitě (a) je
 funkce. Její definiční obor je .

Jelikož  je množina (konkrétně funkce s definičním oborem ), můžeme ji použít

K = {u ∈ W ∣ H1(u) = H2(u)}

K = W u ∈ W

≺s(u) ⊆ K x ∈ W x ≺ u H1(x) = H2(x)

H1 ↾ ≺s(u) H2 ↾ ≺s(u)

gu gu = H1 ↾ ≺s(u) = H2 ↾ ≺s(u)

H1 H2

H1(u) = F(gu)

H2(u) = F(gu)

φ(x, y) F(gu)

H1(u) = H2(u) u ∈ K

K = W H1 = H2 H

H

H

h h

dom(h) = ⪯s(v) v ∈ W ⪯s(v) = {x ∈ W ∣ x ⪯ v}

u ∈ dom(h) φ(h ↾ ≺s(u), h(u)) h(u) = F(h ↾ ≺s(u))

h1 h2 h1(u) = h2(u)

u ∈ dom(h1) ∩ dom(h2) H

S = {x ∈ dom(h1) ∩ dom(h2) ∣ h1(x) ≠ h2(x)}

W u0 ∈ S

x ≺ u0 dom(h1) ∩ dom(h2) h1(x) = h2(x)

h1 ↾ ≺s(u0) = h2 ↾ ≺s(u0) g0 = h1 ↾ ≺s(u0) h1(u0) = F(g0)

h2(u0) = F(g0) F(g0) h1(u0) = h2(u0)

u0 ∈ S S

hv
⪯s(v)

v ∈ W hv dom(hv) = ⪯s(v) hv

v ∈ W P(v)

hv dom(hv) = ⪯s(v) hv

x ≺ v P(x) x ≺ v

hx dom(hx) = ⪯s(x) {hx ∣ x ≺ v}
≺s(v) x ∈ ≺s(v)

hx

ψ(x, k) x ∈ ≺s(v) ∧ k je aproximace hx

{hx ∣ x ≺ v} Sv

gv = ⋃Sv = ⋃x≺v hx gv

gv dom(gv) = ⋃x≺v dom(hx) = ⋃x≺v
⪯s(x) = ≺s(v)

gv
≺s(v)



jako argument pro třídovou funkci . Nechť . Podle definice  (z funkcionální
formule ) je  jednoznačně určená množina. Definujme . Toto je
množina (sjednocení dvou množin). Definičním oborem  je .
Snadno se ověří, že  splňuje podmínku (ii) pro aproximaci:

Pro , . Protože  je samo o sobě aproximací , platí
. Jelikož , dostáváme
.

Pro , .

Tedy  je aproximace s  a  je množina. Podle principu transfinitní
indukce tvrzení  platí pro každé .

(c) Konstrukce funkce : Podle (b) pro každé  existuje jediná aproximace 
(která je množinou) s . Uvažujme třídu . Jelikož  je
množina a pro každé  existuje právě jedna taková množina , Schéma axiomů
nahrazení zaručuje, že  je množina. Označme tuto množinu . Definujme

. Podle Axiomu sjednocení je  množina. Jelikož všechny  jsou
navzájem kompatibilní funkce,  je funkce. Definičním oborem  je

. Pro libovolné  platí
 (protože ). Podle definice  jako aproximace platí

. Jelikož  je sjednocením všech  (pro ) a ty jsou
kompatibilní, platí  pro každé . Speciálně tedy

. Z toho plyne, že  platí pro každé .

Funkce  je tedy množina uspořádaných dvojic,  a splňuje danou
rekurzivní podmínku. Existence je dokázána.

Tím je důkaz Věty 5 kompletní. 

Důsledek 3. Nechť  je funkcionální formule. Potom existuje právě jedna funkce 
taková, že  a pro každé  platí:

Důkaz.

Chceme dokázat, že pro danou funkcionální formuli  existuje právě jedna funkce
 taková, že  a pro každé  platí . Tento důsledek

odvodíme přímo z Věty 5 (Princip transfinitní rekurze s využitím třídových funkcí).

1. Volba dobře uspořádané množiny pro Větu 5: Položme , kde
 je množina přirozených čísel (chápaná jako množina konečných

ordinálních čísel) a  je standardní uspořádání na . Jak víme (např. Příklad 1 z
úvodního textu),  je dobře uspořádaná množina.

2. Volba funkcionální formule pro Větu 5: Věta 5 vyžaduje funkcionální formuli,
kterou v jejím enunciátu označujeme  (nebo  či jinými
metajazykovými proměnnými pro argumenty). Důsledek 3 nám poskytuje

F yv = F(gv) F

φ yv hv = gv ∪ {⟨v, yv⟩}

hv
≺s(v) ∪ {v} = ⪯s(v)

hv

u ≺ v hv(u) = gv(u) gv ↾ ⪯s(u) hu

gv(u) = F(gv ↾ ≺s(u)) gv ↾ ≺s(u) = hv ↾ ≺s(u)

hv(u) = F(hv ↾ ≺s(u))

u = v hv(v) = yv = F(gv) = F(hv ↾ ≺s(v))

hv dom(hv) = ⪯s(v) hv

P(v) v ∈ W

H v ∈ W hv

dom(hv) = ⪯s(v) {hv ∣ v ∈ W} W

v ∈ W hv

{hv ∣ v ∈ W} SW

H = ⋃SW = ⋃v∈W hv H hv

H H

dom(H) = ⋃v∈W dom(hv) = ⋃v∈W
⪯s(v) = W u ∈ W

H(u) = hu(u) u ∈ dom(hu) hu

φ(hu ↾ ≺s(u), hu(u)) H hx x ∈ W

H ↾ ⪯s(x) = hx x ∈ W

H ↾ ≺s(u) = hu ↾ ≺s(u) φ(H ↾ ≺s(u), H(u)) u ∈ W

H dom(H) = W

■

φ(x, y) F

ω = dom(F) n ∈ ω

φ(F ↾ n, F(n)).

φ(x, y)

F dom(F) = ω n ∈ ω φ(F ↾ n, F(n))

(W ,⪯) = (ω, ≤)

ω = {0, 1, 2, …}

≤ ω

(ω, ≤)

φ(x, y) ψ(x, y)



funkcionální formuli, kterou rovněž označujeme . Tuto formuli přímo
použijeme. Podle předpokladu Důsledku 3 je  funkcionální formule, což
znamená, že pro každou množinu  existuje právě jedna množina  taková, že

 platí.
3. Aplikace Věty 5: Podle Věty 5, pro dobře uspořádanou množinu  a

funkcionální formuli , existuje jednoznačně určená funkce  taková, že:

.
Pro každé  (tedy pro každé ) platí: .

4. Přepis do terminologie Důsledku 3: Označme funkci  z Věty 5 jako , což je
označení použité v Důsledku 3.

Podmínka  se stává .
Proměnná  odpovídá .
Striktní iniciální segment  prvku  (tedy  pro ) je
definován jako . V kontextu von Neumannových
ordinálů platí, že ordinál  je množina všech menších ordinálů, tj.

. Tedy .
Výraz  se tak stává . Funkce  je restrikce funkce  na
množinu . Tato restrikce je funkcí s definičním oborem 
(konečný ordinál), a tedy je množinou. Může tak sloužit jako první argument
funkcionální formule .
Hodnota  se stává . Toto je množina, která slouží jako druhý
argument .

Podmínka z Věty 5 tedy zní: Pro každé  platí .

5. Závěr: Funkce  (která je funkcí  z Věty 5) má definiční obor  a pro každé 
splňuje podmínku . Existence a jednoznačnost takové funkce  je
přímo zaručena Větou 5.

Tím je důkaz Důsledku 3 dokončen. 

Věta 6 (Existence tranzitivního uzávěru). Nechť  je množina. Potom existuje
tranzitivní množina  taková, že .

Pro důkaz Věty 6 (Existence tranzitivního uzávěru) si připomeňme definici tranzitivní
množiny:

Definice: Množina  je tranzitivní, pokud pro každý prvek  platí, že  (tj.
pokud  a , pak ).

Důkaz:

1. Konstrukce posloupnosti množin : Chceme definovat posloupnost množin
 rekurzivně takto:

 (kde )

φ(x, y)

φ(x, y)

x y

φ(x, y)

(W ,⪯) = (ω, ≤)

φ(x, y) H

dom(H) = W = ω

u ∈ W n ∈ ω φ(H ↾ ≺s(u), H(u))

H F

dom(H) = ω dom(F) = ω

u ∈ W n ∈ ω
≺s(u) u ∈ ω ≺s(n) n ∈ ω

≺s(n) = {m ∈ ω ∣ m < n}

n

n = {0, 1, … , n − 1} ≺s(n) = n

H ↾ ≺s(u) F ↾ n F ↾ n F

{0, 1, … , n − 1} n

φ

H(u) F(n)

φ

n ∈ ω φ(F ↾ n, F(n))

F H ω n ∈ ω

φ(F ↾ n, F(n)) F

■

A

T A ⊆ T

X y ∈ X y ⊆ X

y ∈ X z ∈ y z ∈ X

(Sn)n∈ω

S0, S1, S2, …

S0 = A

Sn+1 = ⋃ Sn ⋃ X = {z ∣ ∃y ∈ X(z ∈ y)}



Abychom formálně zaručili existenci této posloupnosti jako funkce  (kde
 je třída všech množin) takové, že , použijeme Důsledek 3. Důsledek 3

říká: "Nechť  je funkcionální formule. Potom existuje právě jedna funkce 
taková, že  a pro každé  platí: ."

Definujme funkcionální formuli  následovně:

Zde  je funkce, jejíž definiční obor  je nějaké přirozené číslo .
Pokud  (tj.  je prázdná funkce ), pak  je jednoznačně určeno jako

.
Pokud  (tj. ), pak  je  (předchozí člen
posloupnosti). Množina  je jednoznačně určena Axiomem
sjednocení.

Formule  je tedy funkcionální.

Podle Důsledku 3 existuje právě jedna funkce  taková, že pro každé
 platí . Označme . Pak platí:

 (protože ).
.

Tím je korektně definována posloupnost .
2. Definice množiny : Položme . Aby  byla

množina, musíme ukázat, že  je množina. Toto je obor hodnot funkce
. Jelikož  je množina, podle Schématu axiomů nahrazení je

i obor hodnot  množinou. Potom  je
množina podle Axiomu sjednocení.

3. Důkaz, že : Podle konstrukce . Jelikož , je
zřejmé, že . Tudíž .

4. Důkaz, že  je tranzitivní: Musíme ukázat, že pokud  a , pak .

Nechť . Z definice  plyne, že existuje nějaké  takové, že .
Nechť . Protože , platí .
Podle definice posloupnosti  je .
Tedy .
Jelikož  je jednou z množin, jejichž sjednocením je , platí .
Z  a  vyplývá, že .

Tím jsme ukázali, že  je tranzitivní množina a . Množina  takto
zkonstruovaná se nazývá tranzitivní uzávěr množiny , často značený .

Důkaz Věty 6 je tímto dokončen. 

Cvičení na transfinitní indukci a rekurzi 🧑‍🏫
Cvičení 1: Ordinální aritmetika – Sčítání

H : ω → V

V H(n) = Sn

ψ(p, y) F

ω = dom(F) n ∈ ω ψ(F ↾ n, F(n))

ψ(p, y)

ψ(p, y) ≡ (dom(p) = 0 ∧ y = A) ∨ (∃k ∈ ω(dom(p) = k + 1 ∧ y = ⋃ p(k)))

p dom(p) n

n = 0 p F ↾ 0 y

A

dom(p) = k + 1 p = F ↾ (k + 1) p(k) F(k)

y = ⋃ p(k)

ψ(p, y)

H : ω → V

n ∈ ω ψ(H ↾ n, H(n)) Sn = H(n)

S0 = H(0) = A dom(H ↾ 0) = 0

Sn+1 = H(n + 1) = ⋃(H ↾ (n + 1))(n) = ⋃ H(n) = ⋃ Sn

(Sn)n∈ω

T T = ⋃n∈ω Sn = S0 ∪ S1 ∪ S2 ∪ … T

{Sn ∣ n ∈ ω}

H : ω → V dom(H) = ω

ran(H) = {Sn ∣ n ∈ ω} T = ⋃ ran(H)

A ⊆ T S0 = A T = S0 ∪ S1 ∪ S2 ∪ …

S0 ⊆ T A ⊆ T

T x ∈ T y ∈ x y ∈ T

x ∈ T T n ∈ ω x ∈ Sn

y ∈ x x ∈ Sn y ∈ ⋃ Sn

(Sk)k∈ω Sn+1 = ⋃ Sn

y ∈ Sn+1

Sn+1 T Sn+1 ⊆ T

y ∈ Sn+1 Sn+1 ⊆ T y ∈ T

T A ⊆ T T

A TC(A)

■



Definujte sčítání ordinálních čísel  pomocí transfinitní rekurze podle druhého
argumentu :

1. 
2.  (kde  je následník )
3.  pro limitní ordinál .

Dokažte pomocí transfinitní indukce (podle ), že pro libovolné ordinály  platí
asociativita: .

Nápověda: Rozlišujte případy, kdy ,  je následník, a  je limitní ordinál.

Cvičení 2: Vlastnosti dobře uspořádaných množin

Nechť  je dobře uspořádaná množina. Dokažte pomocí transfinitní indukce, že
neexistuje žádná klesající posloupnost prvků z  délky , tj. neexistuje funkce

 taková, že  pro všechna .

Nápověda: Uvažujte množinu
. Ukažte,

že .

Cvičení 3: Existence funkce minima

Nechť  je dobře uspořádaná množina a  je libovolná neprázdná množina.
Nechť  je funkce, která každé funkci definované na striktním
iniciálním segmentu prvku  přiřadí neprázdnou podmnožinu . Dále nechť

 je funkce, která každé neprázdné podmnožině  přiřadí její
prvek (předpokládejme, že  je dobře uspořádaná, nebo použijte axiom výběru k definici

).

Definujte pomocí Věty 3 (Princip transfinitní rekurze) funkci  tak, že
. Popište, jakou funkci  z Věty 3 byste použili.

Cvičení 4: Porovnání ordinálů

Dokažte pomocí transfinitní indukce, že pro libovolné dva ordinály  platí právě jedna
z následujících možností: , , nebo . (Toto je zákon trichotomie pro
ordinály).

Nápověda: Proveďte indukci například podle . Pro dané  pak proveďte indukci podle
. Využijte faktu, že ordinál je tranzitivní množina dobře uspořádaná relací .

Cvičení 5: Rank množiny

Pro libovolnou množinu  definujeme její rank, , pomocí transfinitní rekurze
takto:

α + β

β

α + 0 = α

α + (β + 1) = (α + β) + 1 β + 1 β

α + λ = ⋃γ<λ(α + γ) λ ≠ 0

β α, β, γ

(α + β) + γ = α + (β + γ)

γ = 0 γ γ

(W ,⪯)

W ω

f : ω → W f(n + 1) ≺ f(n) n ∈ ω

A = {x ∈ W ∣ neexistuje klesající posloupnost z W  začínající x délky ω}

A = W

(W ,⪯) A

g : ≺W A → P(A) ∖ {∅}

u ∈ W A

min : P(A) ∖ {∅} → A A

A

min

H : W → A

H(u) = min(g(H ↾ ≺s(u))) F

α, β

α < β α = β β < α

α α

β ∈

x rank(x)



(kde ). Ukažte, že tato definice je korektní (tj. že ji lze založit na principu
transfinitní rekurze, např. na universu fundovaných množin ). Dokažte pomocí
transfinitní indukce (podle struktury množin, tj. indukcí přes relaci  na ), že pro
libovolné množiny  platí: Pokud , pak .

Nápověda k definici: Rekurzi lze provést na dobře uspořádané třídě všech množin podle
jejich "data narození". Pro důkaz vlastnosti uvažujte množinu

.

Vysvětlíme si podrobněji, co se míní pod univerzem fundovaných množin, často
označovaným jako  nebo jen  (v kontextu Zermelo-Fraenkelovy teorie množin s
axiomem výběru, ZFC).

Univerzum fundovaných množin ( )
Pojem "univerzum fundovaných množin" odkazuje na třídu všech množin, které lze
"postavit" postupně od nejjednodušších základů způsobem, který zabraňuje určitým
paradoxním konstrukcím, jako jsou množiny, které by obsahovaly samy sebe ( )
nebo nekonečné klesající řetězce prvků ( ).

Klíčovou roli zde hraje Axiom fundovanosti (někdy nazývaný Axiom regularity).

1. Axiom fundovanosti (regularity)
Tento axiom formálně říká:

Slovně: Každá neprázdná množina  obsahuje prvek  takový, že  a  nemají žádné
společné prvky (jsou disjunktní). Tento prvek  se někdy nazývá -minimální prvek
množiny .

Důsledky Axiomu fundovanosti:

Žádná množina nemůže obsahovat sama sebe (neplatí ). Kdyby ano, pak
množina  by byla neprázdná, ale její jediný prvek  by měl s  společný prvek

, což by bylo ve sporu s axiomem.
Neexistují řetězce typu .
Obecněji, neexistují žádné nekonečné klesající posloupnosti vzhledem k relaci :

. Pokud by taková posloupnost existovala, množina
 by byla neprázdná. Každý prvek  by však měl

neprázdný průnik s  (protože  a ), což by bylo ve sporu s
axiomem.

Axiom fundovanosti tedy zajišťuje, že relace "býti prvkem" ( ) je dobře fundovaná na
jakékoli množině. To znamená, že každá neprázdná množina má -minimální prvek (ve
smyslu axiomu) a neexistují nekonečné -klesající posloupnosti.

rank(x) = ⋃{rank(y) + 1 ∣ y ∈ x}

rank(∅) = 0

WF

∈ WF

x, y x ∈ y rank(x) < rank(y)

P(y) ≡ (∀x ∈ y)(rank(x) < rank(y))

WF V

WF

x ∈ x

x0 ∋ x1 ∋ x2 ∋ …

∀x(x ≠ ∅ ⟹ ∃y ∈ x(y ∩ x = ∅))

x y y x

y ∈

x

x ∈ x

{x} x {x}

x

x ∈ y ∈ x

∈

x0 ∋ x1 ∋ x2 ∋ …

X = {x0, x1, x2, …} xn ∈ X

X xn+1 ∈ xn xn+1 ∈ X

∈

∈

∈



2. Kumulativní hierarchie množin ( )

Univerzum fundovaných množin  se konstruuje "zdola nahoru" pomocí transfinitní
rekurze přes ordinální čísla. Definujeme třídu (indexovanou ordinály) množin :

Základní krok:  (začínáme s prázdnou množinou).
Následnický krok:  (množina všech podmnožin předchozí úrovně;

 značí potenční množinu ).
Limitní krok:  pro limitní ordinál  (sjednocení všech předchozích
úrovní).

Příklady prvních úrovní:

...
. Tato množina obsahuje všechny dědičně konečné množiny

(množiny, jejichž prvky jsou dědičně konečné, atd.).  slouží jako model pro teorii
množin bez axiomu nekonečna.

Vlastnosti úrovní :

1. Každá  je množina (to lze dokázat transfinitní indukcí; pro  je to zřejmé, 
je množina, pokud  je množina (Axiom potenční množiny), a  je množina,
pokud každé  je množina a třída  je indexována množinou  a lze
použít Axiom sjednocení a Axiom nahrazení).

2. Každá  je tranzitivní množina. (Pokud  a , pak ).
3. Hierarchie je kumulativní (rostoucí): Pokud , pak .
4. Pokud , pak  (konkrétně  protože , tedy

).

3. Rang (hodnost) množiny
Pro každou množinu , která patří do nějaké úrovně , můžeme definovat její rang
(někdy též hodnost):

Ekvivalentně,  je nejmenší ordinál  takový, že . Definice rangu, kterou
jste uvedli ve Cvičení 5 ( ), je rekurzivní definicí, která
je s touto ekvivalentní pro fundované množiny.

 (protože )
Pokud , pak .

4. Univerzum fundovaných množin ( )

Vα

WF

Vα

V0 = ∅

Vα+1 = P(Vα)

P(X) X

Vλ = ⋃β<λ Vβ λ

V0 = ∅

V1 = P(V0) = P(∅) = {∅}

V2 = P(V1) = P({∅}) = {∅, {∅}}

V3 = P(V2) = P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}

Vω = ⋃n<ω Vn

Vω

Vα

Vα V0 P(Vα)

Vα ⋃β<λ Vβ

Vβ {Vβ ∣ β < λ} λ

Vα x ∈ Vα y ∈ x y ∈ Vα

α < β Vα ⊆ Vβ

α < β Vα ∈ Vβ Vα ∈ Vα+1 Vα ⊆ Vα

Vα ∈ P(Vα) = Vα+1

x Vα

rank(x) = min{α ∣ x ∈ Vα+1}

rank(x) α x ⊆ Vα

rank(x) = ⋃{rank(y) + 1 ∣ y ∈ x}

rank(∅) = 0 ∅ ∈ V1 = V0+1

x ∈ y rank(x) < rank(y)

WF



Univerzum fundovaných množin  (někdy označované jen ) je definováno jako
sjednocení všech úrovní kumulativní hierarchie:

kde  je třída všech ordinálních čísel.

Důležité body o :

 (nebo ) je vlastní třída, nikoli množina. Obsahuje všechny "dobře chovající
se" množiny.
Vztah k Axiomu fundovanosti: Axiom fundovanosti je ekvivalentní tvrzení, že
každá množina je fundovaná, tj. každá množina patří do . V systému ZFC se
tedy předpokládá, že třída všech množin je právě . Tedy  (jako třída všech
množin v ZFC) se rovná . Jinými slovy, každá množina má rang.

5. Význam pro transfinitní indukci a rekurzi
Struktura  jako kumulativní hierarchie indexované ordinály je zásadní pro teorii
množin:

Poskytuje "měřítko složitosti" množin: Rang množiny udává, v jaké "fázi"
konstrukce vesmíru se daná množina objevuje. Množiny s menším rangem jsou
"jednodušší" nebo "dříve sestrojené".
Umožňuje důkazy transfinitní indukcí "na všech množinách": Mnoho tvrzení o
všech množinách lze dokázat transfinitní indukcí podle rangu množin.
Umožňuje definice transfinitní rekurzí "na všech množinách": Funkce, jejichž
definičním oborem je třída všech množin, lze definovat rekurzí podle rangu. Definice
rangu ve vašem Cvičení 5 je příkladem takové rekurze (definujeme  na
základě rangů prvků , které mají menší rang).

Stručně řečeno,  je představa vesmíru množin, kde je vše postaveno systematicky od
prázdné množiny pomocí operace potenční množiny a sjednocení na limitních krocích,
což zajišťuje dobrou fundovanost a vylučuje patologické případy. Axiom fundovanosti
postuluje, že všechny množiny, se kterými v ZFC pracujeme, do tohoto fundovaného
univerza patří. Cvičení 5 o rangu množiny se opírá právě o tuto strukturu.
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WF = V = ⋃
α∈On

Vα

On
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WF V
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rank(x)
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