
Mohutnosti množin

Konečné množiny
Definice. Množina  se nazývá konečná, jestliže existuje přirozené číslo  a prostá
funkce 

Definice. Množina  se nazývá nekonečná, jestliže není konečná. :-)

Definice. Předpokládejme, že  je konečná množina. Dále nechť  je nejmenší přirozené
číslo takové, že existuje prostá funkce  Pak  se nazývá mohutnost množiny

 nebo že  je počet prvků množiny . Potom píšeme  Jsou-li  a 
konečné množiny, přičemž současně  a  pak píšeme: 

Věta. Je-li  konečná množina a  pak jestliže  je prostá funkce,
potom  je bijekce.

Důkaz. Předpokládáme, že  je konečná množina a  Pokud je , pak
 a  je zřejmě surjektivní. Nyní předpokládejme, že  je neprázdná

množina a nechť  je prostá funkce. Zřejmě  Sporem předpokládejme,
že funkce  není surjektivní. Pak existuje  takové, že  Dále nechť  je
takové přirozené číslo, pro které platí  Jelikož , potom buď 
nebo  Pokud by platilo , pak  je prostá funkce. Protože ,
dostáváme spor s tím, že  Pokud by platilo , pak položíme:

protože je funkce  prostá, je funkce  také prostá. Protože , plyne
odsud , což je spor s tím, že  

Věta. Nechť  je konečná množina a  je prostá funkce. Pak  je surjektivní.

Věta. Jsou-li  a  konečné množiny, pak  právě tehdy, když existuje bijekce

Důkaz. Provádět jej nebudeme.

Věta. Pro všechna přirozená čísla  platí 

Dirichletův zásuvkový princip
Věta (Dirichletův zásuvkový princip). Nechť  a  jsou přirozená čísla a nechť

 je funkce. Jestliže  pak  není prostou funkcí.

Důkaz. Předpokládejme sporem, že  jsou přirozená čísla taková, že  a
 je prostá funkce. Protože je , lze definovat prostou funkci 

takto:
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pro všechna  Dále položme  Potom  je prostá funkce. Díky
předcházející větě je funkce  surjektivní. Tedy

Odtud plyne, že  což znamená, že  To je spor s tím, že pro každé
přirozené číslo  platí  

Důsledek. Nechť  je prostá funkce. Pak je množina  nekonečná.

Důkaz. Ponecháme jako cvičení. 

(Řešení cvičení. Sporem předpokládejme, že  je konečná množina. Pak existuje
přirozené číslo  a prostá funkce  Pak je složená funkce 
také prostá funkce. Pokud je nyní  takové přirozené číslo, že , pak je restrikce
složené funkce  na  také prostá funkce. Protože , dostáváme spor s
Dirichletovým zásuvkovým principem.)

Věta. Nechť  je množina je množina všech binárních posloupností, tj.

Potom  je nekonečná množina.

Důkaz. Nebudeme jej provádět. 

Věta. Je-li  konečná množina a  je surjektivní funkce, pak  je prostou funkcí
a tedy je bijekcí.

Důkaz. Ponecháme jako cvičení. 

(Řešení cvičení. ...)

Věta. Nechť  je konečná množina. Potom je potenční množina  též konečná.

Důkaz. Ponecháme jako cvičení. 

(Řešení cvičení. ...)

Spočetné množiny
Definice. Množina  se nazývá spočetná, jestliže existuje prostá funkce 

Poznámka. Je-li  konečná množina, pak je zřejmé, že  je spočetná množina.

Definice. Řekneme, že množina  je nekonečnou spočetnou množinou, jestliže  je
nekonečná a spočetná množina.

Příklad. Množina  je nekonečná spočetná množina.

g(k) = k

k ∈ m. h = g ∘ f. h : n → n

h

n = ran(h) = {g(f(k)) : k ∈ n} = {f(k) : k ∈ n} = ran(f) ⊂ m.
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m m ∉ m. □
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□
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Věta. Nechť  a  jsou množiny a nechť  je spočetná množina. Je-li pak funkce
 prostá, pak  je spočetná množina.

Důkaz. Nechť  jsou množiny a nechť  je spočetná množina. Dále nechť
 je prostá funkce. Z definice spočetnosti plyne existence prosté funkce
 Potom složená funkce  je prostá funkce. Tudíž  je

spočetná množina. 

Věta. Nechť  jsou množiny a nechť  Je-li  spočetná množina, pak  je
spočetná množina.

Důkaz. Nechť  jsou množiny a nechť  Dále nechť  je injektivní
funkce definovaná předpisem  pro všechna  Nyní je tvrzení věty
důsledkem předchozí věty. 

Věta. Jsou-li  a  spočetné množiny, pak i množina  je spočetná množina.

Důkaz. Nechť  a  jsou spočetné množiny. Z definice spočetnosti existují prosté
funkce  a .

Pro důkaz poslední věty "Jsou-li  a  spočetné množiny, pak i množina  je
spočetná množina" potřebujeme zkonstruovat prostou funkci množiny  do .

Definujme funkci  následujícím předpisem:

Ověřme, že funkce  je prostá:

1. Pro libovolné  platí: pokud , pak , tedy
. Jelikož  je prostá, máme .

2. Pro libovolné  platí: pokud , pak
, tedy . Jelikož  je prostá, máme .

3. Pro  a  platí:  je sudé číslo, zatímco
 je liché číslo. Proto .

Tím jsme ověřili, že funkce  je prostá, a tedy množina  je spočetná. 

Poznámka: Tato konstrukce funguje obecně, ať už jsou množiny  a  disjunktní či
nikoliv. Pokud  leží v průniku , přiřadíme mu hodnotu podle první podmínky, tedy

.

Věta. Nechť  je nekonečná spočetná množina. Potom existuje bijekce 

Důkaz. Jelikož  je spočetná množina, existuje podle definice prostá funkce .
Označme množinu .

Vzhledem k tomu, že  je prostá a  je nekonečná, musí být i množina  nekonečná
podmnožina .
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□
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i(a) = a a ∈ A.

□

A B A ∪ B
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f : A → ω g : B → ω

A B A ∪ B

A ∪ B ω

h : A ∪ B → ω

h(x) = { 2 ⋅ f(x) pokud x ∈ A

2 ⋅ g(x) + 1 pokud x ∈ B ∖ A

h

x, y ∈ A h(x) = h(y) 2 ⋅ f(x) = 2 ⋅ f(y)

f(x) = f(y) f x = y

x, y ∈ B ∖ A h(x) = h(y)

2 ⋅ g(x) + 1 = 2 ⋅ g(y) + 1 g(x) = g(y) g x = y

x ∈ A y ∈ B ∖ A h(x) = 2 ⋅ f(x)

h(y) = 2 ⋅ g(y) + 1 h(x) ≠ h(y)

h A ∪ B □

A B

x A ∩ B

h(x) = 2 ⋅ f(x)

A g : ω → A.

A f : A → ω

B = f(A) = {f(a) ∣ a ∈ A} ⊆ ω

f A B
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Nyní zkonstruujeme bijekci mezi  a . Jelikož  je nekonečná podmnožina , můžeme
její prvky uspořádat vzestupně:

kde  jsou všechny prvky množiny  uspořádané podle velikosti.

Definujme funkci  předpisem  pro každé . Tato funkce
přiřazuje číslu  -tý nejmenší prvek množiny .

Funkce  je zjevně:

1. Prostá: pokud , pak  (jsou to různé prvky uspořádané posloupnosti),
tedy .

2. Na: každý prvek  je -tým nejmenším prvkem  pro nějaké , takže
.

Tedy  je bijekce.

Dále uvažujme funkci  definovanou předpisem , kde  je
prvek splňující . Tato funkce existuje a je bijekce, protože  je prostá funkce z 
na .

Nyní můžeme definovat hledanou bijekci  jako složení funkcí:

Funkce  je bijekce, protože je složením dvou bijekcí. Pro každé  platí:

Tím jsme zkonstruovali bijekci , což bylo požadováno. 

Nespočetné množiny
Definice. Množina  se nazývá nespočetná, jestliže není spočetná, tj. jestliže neexistuje
prostá funkce 

Poznámka. Jako první Georg Cantor dokázal existenci nespočetných množin. Metodě,
kterou Cantor použil, se říká Cantorova diagonalizace.

Věta. Nechť  je množina je množina všech binárních posloupností, tj.

Potom  je nespočetná množina.

Důkaz. Předpokládejme sporem, že  je spočetná množina. Nyní z toho, že množina
všech binárních posloupností je nekonečnou množinou, plyne, že existuje bijekce

 Pro každé  definujme . Potom

ω B B ω

B = {b0, b1, b2, …}

b0 < b1 < b2 < … B

h : ω → B h(n) = bn n ∈ ω

n n B

h

m ≠ n bm ≠ bn

h(m) ≠ h(n)

b ∈ B n B n ∈ ω

h(n) = b

h : ω → B

f−1 : B → A f−1(b) = a a ∈ A

f(a) = b f A

B

g : ω → A

g = f−1 ∘ h

g n ∈ ω

g(n) = f−1(h(n)) = f−1(bn)

g : ω → A □

X

f : X → ω.

F

F = {f : f : ω → {0, 1}}.

X

X

h : ω → F . i ∈ ω fi = h(i)

F = {f0, f1, f2, …} ((1))



Nyní definujme binární posloupnost  takovou, že pro každé  je
. Definujme  takto:

pro každé . Je zřejmé, že  a tedy . Z definice posloupnosti 
plyne, že  pro každé . To je spor s tím, že  je bijekce. 

Poznámka. Očíslovaný seznam všech binárních posloupností  lze zapsat v
následující vertikální tabulce:

Pokud budeme předpokládat, že například , , , ,
 a , pak posloupnost  bude mít hodnoty , ,

, ,  a . Tedy posloupnost  se liší od každé
posloupnosti  právě v i-tém členu. Tímto způsobem Cantor dokázal, že množina všech
binárních posloupností je nespočetná.

Věta. Nechť  a  jsou množiny. Je-li množina  nespočetná a existuje prostá funkce
, pak  je nespočetná množina.

Důkaz. Důkaz se provede sporem. Předpokládáme, že množina  je naopak spočetná.
Nyní protože je funkce  prostá, plyne odsud, že je i množina  spočetná. To je
spor s tím, že množina  je nespočetná. 

Lemma. Existuje prostá funkce , kde  je množina všech binárních
posloupností a  je množina reálných čísel.

g : ω → {0, 1} i ∈ ω

g ≠ fi g

g(i) = { 0 pokud fi(i) = 1
1 pokud fi(i) = 0,

i ∈ ω g : ω → {0, 1} g ∈ F g

g ≠ fi i ∈ ω h □

f0, f1, f2, …

f0(0) = 0 f1(1) = 1 f2(2) = 0 f3(3) = 0

f4(4) = 1 f5(5) = 1 g g(0) = 1 g(1) = 0

g(2) = 1 g(3) = 1 g(4) = 0 g(5) = 0 g

fi

A B A

g : A → B B

B

g : A → B A

A □

f : F → R F

R



Věta. Množina  je nespočetná množina.

Důkaz. Jedná se o důsledek předchozí věty a lemmatu. 

Ekvipotence množin
Definice. Nechť  a  jsou množiny. Řekneme, že množiny  a  jsou ekvipotentní
nebo že mají stejnou mohutnost, jestliže existuje bijekce  V takovém případě
píšeme .

Poznámka. Jsou-li  a  konečné množiny, pak  právě tehdy, když 
. Tedy pro konečné množiny je ekvipotence shodná s rovností počtu prvků.

Ekvipotence  a  resp. 

Věta.  a 

Důkaz.

Konstrukce bijekce :

Popis.

- Pro  máme .

- Pro lichá  (tj. ) přiřadíme .

- Pro sudá  (tj. ) přiřadíme .

Injektivita.

Pokud  oba liché a , pak  ⇒
.

Analogicky pro obě sudá .
Nelze mít rovnost mezi hodnotou kladnou a zápornou ani mezi nulou a které-koliv
nenulovou hodnotou, neboť znaménka (resp. nula) se liší.

Surjektivita. Každé  je buď  (obraťme ), nebo kladné ( , má
protějšek ), nebo záporné ( , má protějšek ).

Tím je  bijekcí a tedy .

Část 1: Jiný důkaz toho, že 

Připomeňme, že  je množina přirozených čísel (včetně nuly) a
 je množina celých čísel. Množiny  a  jsou

ekvipotentní, píšeme , pokud existuje bijekce .

R

□

A B A B

f : A → B.

|A| =c |B|

A B |A| =c |B| |A| = |B|

ω Z Q

|ω| =c |Z| |ω| =c |Q|.

f : ω → Z

f(n) =
⎧
⎨⎩

0, n = 0,
k, n = 2k − 1,  k ≥ 1,

− k, n = 2k,  k ≥ 1.

n = 0 f(0) = 0

n ≥ 1 n = 2k − 1 f(n) = k > 0

n ≥ 2 n = 2k f(n) = −k < 0

n1,n2 > 0 f(n1) = f(n2) k1 = k2

n1 = 2k1 − 1 = 2k2 − 1 = n2

n1,n2

z ∈ Z 0 n = 0 z = k > 0

n = 2k − 1 z = −k < 0 n = 2k

f |ω| =c |Z|

|ω| =c |Z|

ω = {0, 1, 2, 3, …}

Z = {… , −2, −1, 0, 1, 2, …} A B

|A| =c |B| f : A → B



Potřebujeme najít bijekci . Definujme funkci  následovně:

Ověřme, že  je bijekce:

1. f je prostá (injektivní): Předpokládejme, že  pro .

Pokud jsou  obě sudá, pak , z čehož plyne .
Pokud jsou  obě lichá, pak , z čehož plyne

, a tedy .
Pokud je  sudé a  liché, pak  a

. Protože nezáporné číslo se nemůže rovnat
zápornému číslu, . Tento případ tedy nemůže nastat, pokud

.
Funkce  je tedy prostá.

2. f je na (surjektivní): Nechť  je libovolné celé číslo. Hledáme  takové, že
.

Pokud , zvolme . Protože , je  sudé přirozené číslo (nebo
nula), tedy . Pak .
Pokud , položme  pro nějaké . Hledáme liché 
takové, že . To znamená , neboli

, a tedy . Protože , je 
. Tedy  je liché přirozené číslo, . Pak

.
Pro každé  jsme našli  takové, že . Funkce  je tedy na.

Protože  je prostá i na, je to bijekce. Tím jsme dokázali, že .

Část 2: Důkaz 

Připomeňme  je množina racionálních čísel. Budeme
postupovat tak, že ukážeme, že  je nekonečná spočetná množina. Podle věty uvedené v
textu ("Nechť  je nekonečná spočetná množina. Potom existuje bijekce ")
pak bude platit .

1.  je nekonečná: Množina celých čísel  je podmnožinou  ( , protože každé
 lze psát jako ). Jelikož jsme v části 1 ukázali, že  je ekvipotentní s

nekonečnou množinou , je  nekonečná. Proto i její nadmnožina  musí být
nekonečná.

2.  je spočetná: Podle definice je množina spočetná, pokud existuje prostá funkce z
ní do . Použijeme větu: "Nechť  a  jsou množiny a nechť  je spočetná
množina. Je-li pak funkce  prostá, pak  je spočetná množina." Ukážeme,
že existuje prostá funkce z  do nějaké známé spočetné množiny.

Uvažujme množinu . Tato množina je spočetná.

f : ω → Z f

f(n) = {n/2 pokud n je sudé
−(n + 1)/2 pokud n je liché

f

f(n1) = f(n2) n1,n2 ∈ ω

n1,n2 n1/2 = n2/2 n1 = n2

n1,n2 −(n1 + 1)/2 = −(n2 + 1)/2

n1 + 1 = n2 + 1 n1 = n2

n1 n2 f(n1) = n1/2 ≥ 0

f(n2) = −(n2 + 1)/2 < 0

f(n1) ≠ f(n2)

f(n1) = f(n2)

f

z ∈ Z n ∈ ω

f(n) = z

z ≥ 0 n = 2z z ≥ 0 n

n ∈ ω f(n) = f(2z) = (2z)/2 = z

z < 0 z = −k k ∈ Z, k > 0 n

f(n) = −(n + 1)/2 = −k (n + 1)/2 = k

n + 1 = 2k n = 2k − 1 k ≥ 1 n = 2k − 1 ≥ 2(1) − 1 = 1

n n ∈ ω

f(n) = f(2k − 1) = −((2k − 1) + 1)/2 = −(2k)/2 = −k = z

z ∈ Z n ∈ ω f(n) = z f

f : ω → Z |ω| =c |Z|

|ω| =c |Q|

Q = {p/q ∣ p ∈ Z, q ∈ N, q ≠ 0}

Q

A g : ω → A.

|ω| =c |Q|

Q Z Q Z ⊂ Q

z ∈ Z z/1 Z

ω Z Q

Q

ω A B B

f : A → B A

Q

Z × N



(Důkaz spočetnosti : Víme, že  a  (např. bijekce
 z  do  a její inverze). Existují tedy bijekce  a .

Pak funkce  definovaná jako  je
bijekce. Množina  je spočetná, protože existuje prostá funkce ,
například  (jednoznačnost prvočíselného rozkladu zaručuje prostotu)
nebo Cantorova párovací funkce. Protože existuje bijekce z  do spočetné
množiny , je i  spočetná.)

Nyní zkonstruujme prostou funkci . Každé racionální číslo 
lze jednoznačně zapsat ve tvaru , kde ,  ( ) a  jsou
nesoudělná (jejich největší společný dělitel je 1). Definujme .
Ověřme, že  je prostá. Nechť  a . To znamená, že

, kde  a  jsou zápisy v základním tvaru.
Rovnost dvojic znamená  a . Potom ale

. Funkce  je tedy prostá.
Máme prostou funkci  a víme, že množina  je spočetná.
Podle výše zmíněné věty je tedy i množina  spočetná.

3. Závěr: Dokázali jsme, že  je nekonečná a spočetná množina. Podle věty "Nechť 
je nekonečná spočetná množina. Potom existuje bijekce " tedy existuje
bijekce . To znamená, že .

Tím je důkaz obou částí věty dokončen. 

Striktní nerovnost mezi mohutnostmi
Definice. Řekneme, že množina  má striktně menší mohutnost než množina  a
píšeme: , jestliže existuje prostá funkce  a neexistuje bijekce

.

Věta (G. Cantor). Nechť  je libovolná množina. Potom , kde  je
potenční množina množiny .

Důkaz. Musíme ukázat dvě věci:

1. Existuje prostá funkce .
2. Neexistuje bijekce (a tedy ani surjekce) .

Ad 1. Definujme funkci  předpisem  pro každé . Funkce
 přiřazuje každému prvku  z množiny  jednoprvkovou množinu , která je prvkem

potenční množiny . Ověřme, že  je prostá. Nechť  a . To
znamená . Dvě množiny jsou si rovny právě tehdy, když mají stejné prvky.
Proto musí platit . Funkce  je tedy prostá.

Ad 2. Předpokládejme sporem, že existuje surjektivní funkce . To
znamená, že ke každé podmnožině  (tj. ke každému ) existuje alespoň
jedno  takové, že .

Nyní zkonstruujme specifickou podmnožinu  množiny , známou jako Cantorova
diagonální množina:

Z × N |Z| =c |ω| |N| =c |ω|

n ↦ n + 1 ω N fZ : Z → ω fN : N → ω

F : Z × N → ω × ω F(z,n) = (fZ(z), fN(n))

ω × ω h : ω × ω → ω

h(a, b) = 2a3b

Z × N

ω × ω Z × N

j : Q → Z × N q ∈ Q

q = p/r p ∈ Z r ∈ N r ≥ 1 p, r

j(q) = (p, r)

j q1, q2 ∈ Q j(q1) = j(q2)

(p1, r1) = (p2, r2) q1 = p1/r1 q2 = p2/r2

p1 = p2 r1 = r2

q1 = p1/r1 = p2/r2 = q2 j

j : Q → Z × N Z × N

Q

Q A

g : ω → A.

g : ω → Q |ω| =c |Q|

□

A B

|A| <c |B| f : A → B

g : A → B

A |A| <c |P(A)| P(A)

A

f : A → P(A)

g : A → P(A)

f : A → P(A) f(a) = {a} a ∈ A

f a A {a}

P(A) f a1, a2 ∈ A f(a1) = f(a2)

{a1} = {a2}

a1 = a2 f

g : A → P(A)

S ⊆ A S ∈ P(A)

a ∈ A g(a) = S

D A



Množina  obsahuje právě ty prvky  z , které nepatří do množiny , kterou jim
funkce  přiřazuje. Jelikož  je podmnožina , platí .

Protože jsme předpokládali, že  je surjektivní, musí existovat nějaký prvek  takový,
že . Nyní se ptejme: Platí  nebo ?

Případ 1: Předpokládejme, že . Podle definice množiny , pokud , pak
musí platit . Ale víme, že . Dosazením dostáváme: pokud ,
pak . To je spor.

Případ 2: Předpokládejme, že . Podle definice množiny , pokud ,
znamená to, že prvek  nesplňuje podmínku pro zařazení do , tj. neplatí .
Musí tedy platit opak: . Ale víme, že . Dosazením dostáváme:
pokud , pak . To je opět spor.

Oba možné případy vedou ke sporu. To znamená, že náš původní předpoklad o existenci
surjektivní funkce  musí být nepravdivý. Pokud neexistuje surjektivní
funkce z  do , nemůže existovat ani bijektivní funkce z  do .

Závěr: Ukázali jsme, že existuje prostá funkce  a že neexistuje bijekce
. Podle definice striktně menší mohutnosti tedy platí . 

Věta (G. Cantor). . Tedy množina  má větší mohutnost než množina .

Hypotéza kontinua a metoda forcingu
Hypotéza kontinua. Hypotéza kontinua je hypotéza, že neexistuje množina 
taková, že . Tedy mezi množinami  a  neexistuje žádná jiná množina.

Kurt Gödel v roce 1940 ukázal, že hypotéza kontinua je konzistentní s axiomy teorie
množin ZFC (nelze ji v ZFC vyvrátit). Paul Cohen v roce 1963 dokázal, že i její negace je
konzistentní s ZFC (nelze ji v ZFC dokázat). Dohromady to znamená, že hypotéza
kontinua je na axiomech ZFC nezávislá.

Metoda forcingu. Paul Cohen pro důkaz nezávislosti hypotézy kontinua vyvinul metodu
zvanou forcing. Tato metoda umožňuje konstruovat nové modely teorie množin, ve
kterých platí nebo neplatí určité výroky, jako je hypotéza kontinua.

Definice. Nechť  a  jsou množiny. Řekneme, že množina  má mohutnost menší
nebo rovnou než množina  a píšeme , jestliže existuje prostá funkce

.

Cantor-Bernstein-Schröderova věta
Věta (Cantor-Bernstein-Schröderova). Nechť  a  jsou množiny. Pak platí:

Důkaz.

D = {a ∈ A ∣ a ∉ g(a)}

D a A g(a)

g D A D ∈ P(A)

g d ∈ A

g(d) = D d ∈ D d ∉ D

d ∈ D D d ∈ D

d ∉ g(d) g(d) = D d ∈ D

d ∉ D

d ∉ D D d ∉ D

d D d ∉ g(d)

d ∈ g(d) g(d) = D

d ∉ D d ∈ D

g : A → P(A)

A P(A) A P(A)

f : A → P(A)

g : A → P(A) |A| <c |P(A)| □

|ω| <c |R| R ω

A ⊂ R

|ω| <c |A| <c |R| ω R

A B A

B |A| ≤c |B|

f : A → B

A B

|A| ≤c |B| a |B| ≤c |A| ⟹ |A| =c |B|.



Předpokládáme, že existují prosté (injektivní) funkce  a . Naším
cílem je zkonstruovat bijektivní funkci .

Pro libovolný prvek  nebo  můžeme sledovat jeho "předky" pomocí
inverzních funkcí  a  (pokud existují). Pro daný prvek  můžeme vytvořit
posloupnost předků:

Tato posloupnost je definována pouze tehdy, pokud jsou příslušné inverzní obrazy
definovány. Jelikož  a  jsou pouze injektivní, nemusí být definovány pro všechny prvky.
Posloupnost předků pro prvek  končí, pokud narazíme na prvek, který nemá předka (tj.
prvek v , který není v obrazu , nebo prvek v , který není v obrazu ).

Rozdělíme množinu  na tři disjunktní podmnožiny podle původu jejího řetězce předků:

1. : Množina prvků , jejichž řetězec předků končí v množině  (tj. končí
prvkem ).

2. : Množina prvků , jejichž řetězec předků končí v množině  (tj. končí
prvkem ).

3. : Množina prvků , jejichž řetězec předků je nekonečný.

Analogicky rozdělíme množinu  na tři disjunktní podmnožiny , , .

Lze ukázat, že:

Funkce  zobrazuje  do ,  do  a  do .
Funkce  zobrazuje  do ,  do  a  do .
Restrikce  je bijekce.
Restrikce  je bijekce.

Restrikce  je bijekce. Proto její inverze  je také
bijekce.

Nyní můžeme definovat bijekci  následovně:

Tato funkce  je definována pro všechny . Funkce  je bijekcí,
protože je složena z bijekcí na disjunktních částech definičního oboru a oboru hodnot:

 mapuje  bijektivně na  pomocí .
 mapuje  bijektivně na  pomocí .
 mapuje  bijektivně na  pomocí .

Jelikož  a tyto množiny jsou disjunktní, je  bijekcí z  do . Tím je
existence bijekce dokázána a platí . 

(Alternativní důkazová konstrukce)

f : A → B g : B → A

h : A → B

x ∈ A x ∈ B

f−1 g−1 a ∈ A

a, g−1(a), f−1(g−1(a)), g−1(f−1(g−1(a))), …

f g

a

A g(B) B f(A)

A

AA a ∈ A A

a0 ∈ A ∖ g(B)

AB a ∈ A B

b0 ∈ B ∖ f(A)

A∞ a ∈ A

B BA BB B∞

f AA BA AB BB A∞ B∞

g BA AA BB BB B∞ A∞

f|AA
: AA → BA

f|A∞
: A∞ → B∞

g|BB
: BB → AB (g|BB

)−1 : AB → BB

h : A → B

h(a) = { f(a) pokud a ∈ AA nebo a ∈ A∞

(g|BB
)−1(a) pokud a ∈ AB

h a ∈ A = AA ∪ AB ∪ A∞ h

h AA BA f

h A∞ B∞ f

h AB BB (g|BB
)−1

B = BA ∪ BB ∪ B∞ h A B

|A| =c |B| □



Nechť  a  jsou injektivní. Definujme množinu . Toto
jsou prvky v , které nemají předka v  skrze . Definujme množinu "potomků"  v 
opakovanou aplikací :

kde  je identita na . Definujme funkci  takto:

Korektnost definice: Pokud , pak , což znamená
. Protože  je injektivní, existuje právě jedno  takové, že .

Toto  označujeme . Funkce  je tedy dobře definovaná.
Injektivita: Ukáže se, že pokud , pak  rozborem případů, zda

 patří či nepatří do . Klíčovým krokem je ukázat, že  a 
jsou disjunktní podmnožiny .
Surjektivita: Pro libovolné  se ukáže, že existuje  takové, že .
Rozliší se případy, zda  patří do  či nikoliv.

Jelikož  je injektivní i surjektivní, je to bijekce a platí . 

Věta. .

Důkaz. Použijeme Cantor-Bernstein-Schröderovu větu. K tomu potřebujeme ukázat
existenci dvou prostých funkcí:

1. Prosté funkce .
2. Prosté funkce .

Ad 1: Existence prosté funkce 

Víme, že množina racionálních čísel  je spočetná, tedy . Existuje tedy bijekce
. Tato bijekce indukuje bijekci  definovanou jako

 pro .

Definujme funkci  předpisem:

Ukážeme, že  je prostá. Nechť  a . Bez újmy na obecnosti
předpokládejme . Podle vlastnosti hustoty racionálních čísel v reálných číslech
existuje  takové, že . Potom  (protože ), ale 
(protože ). Tudíž . Funkce  je tedy prostá.

Nyní definujme  jako složení . Jelikož  je prostá a  je bijekce
(tedy také prostá), je jejich složení  také prostá funkce. Tím jsme dokázali existenci
prosté funkce z  do , což znamená .

Ad 2: Existence prosté funkce 

f : A → B g : B → A C = A ∖ g(B)

A B g C A

g ∘ f

A∗ =
∞

⋃
n=0

(g ∘ f)n(C) = C ∪ (g ∘ f)(C) ∪ (g ∘ f)2(C) ∪ …

(g ∘ f)0 A h : A → B

h(a) = { f(a) pokud a ∈ A∗

g−1(a) pokud a ∉ A∗

a ∉ A∗ a ∉ C = A ∖ g(B)

a ∈ g(B) g b ∈ B g(b) = a

b g−1(a) h

a1 ≠ a2 h(a1) ≠ h(a2)

a1, a2 A∗ f(A∗) g−1(A ∖ A∗)

B

b ∈ B a ∈ A h(a) = b

g(b) A∗

h |A| =c |B| □

|R| =c |P(ω)|

f : R → P(ω)

g : P(ω) → R

f : R → P(ω)

Q |Q| =c |ω|

b : Q → ω B : P(Q) → P(ω)

B(S) = {b(q) ∣ q ∈ S} S ⊆ Q

h : R → P(Q)

h(x) = {q ∈ Q ∣ q < x}

h x, y ∈ R x ≠ y

x < y

q0 ∈ Q x < q0 < y q0 ∈ h(y) q0 < y q0 ∉ h(x)

q0 > x h(x) ≠ h(y) h

f : R → P(ω) f = B ∘ h h B

f

R P(ω) |R| ≤c |P(ω)|

g : P(ω) → R



Připomeňme, že  je množina všech podmnožin . Každé
podmnožině  můžeme jednoznačně přiřadit její charakteristickou funkci

, kde  pokud  a  pokud . Označme 
množinu všech takových charakteristických funkcí (binárních posloupností). Existuje
zřejmá bijekce mezi  a , takže . Stačí tedy ukázat existenci prosté
funkce .

Definujme funkci  následovně. Pro , ,
položme:

Tato funkce zobrazuje binární posloupnost  na reálné číslo v intervalu  zapsané v
ternární (trojkové) soustavě jako . V tomto zápisu se vyskytují pouze
číslice 0 a 1.

Ukážeme, že  je prostá. Nechť  a . Pak existuje nejmenší index 
takový, že . Bez újmy na obecnosti předpokládejme  a

. Potom:

Protože  pro , máme:

Odhadneme sumu:

Tato geometrická řada má součet:

Tedy:

Proto . Funkce  je tedy prostá. (Alternativně: Reprezentace reálného čísla v
ternární soustavě je nejednoznačná pouze tehdy, končí-li nekonečnou posloupností číslic
2. Jelikož naše reprezentace používá pouze číslice 0 a 1, je vždy jednoznačná.)

P(ω) ω = {0, 1, 2, …}

S ⊆ ω

χS : ω → {0, 1} χS(n) = 1 n ∈ S χS(n) = 0 n ∉ S F

P(ω) F |P(ω)| =c |F |

g : F → R

g : F → R f ∈ F f = (f(0), f(1), f(2), …)

g(f) =
∞

∑
n=0

f(n)

3n+1

f [0, 1/2]

0.f(0)f(1)f(2) …3

g f1, f2 ∈ F f1 ≠ f2 k ∈ ω

f1(k) ≠ f2(k) f1(k) = 0

f2(k) = 1

g(f1) =
k−1

∑
n=0

+ +
∞

∑
n=k+1

f1(n)

3n+1

0

3k+1

f1(n)

3n+1

g(f2) =
k−1

∑
n=0

+ +
∞

∑
n=k+1

f2(n)

3n+1

1

3k+1

f2(n)

3n+1

f1(n) = f2(n) n < k

g(f2) − g(f1) = +
∞

∑
n=k+1

1

3k+1

f2(n) − f1(n)

3n+1

∣
∣
∣
∣

∞

∑
n=k+1

∣
∣
∣
∣

≤
∞

∑
n=k+1

≤
∞

∑
n=k+1

f2(n) − f1(n)

3n+1

|f2(n) − f1(n)|

3n+1

1

3n+1

∞

∑
n=k+1

= + + ⋯ = (1 + + + …) = =
1

3n+1

1

3k+2

1

3k+3

1

3k+2

1

3

1

32

1

3k+2

1

1 − 1/3 3

g(f2) − g(f1) ≥ −
∞

∑
n=k+1

≥ −
∞

∑
n=k+1

= − =
1

3k+1

f1(n)

3n+1

1

3k+1

1

3n+1

1

3k+1

1

2 ⋅ 3k+1 2 ⋅ 3

g(f1) ≠ g(f2) g



Existuje tedy prostá funkce . Protože , existuje i prostá funkce z
 do , což znamená .

Závěr: Ukázali jsme, že  a . Podle Cantor-Bernstein-
Schröderovy věty z toho plyne, že . 

g : F → R |P(ω)| =c |F |

P(ω) R |P(ω)| ≤c |R|

|R| ≤c |P(ω)| |P(ω)| ≤c |R|

|R| =c |P(ω)| □


