Mohutnosti mnozin

Konec¢né mnoziny

Definice. Mnozina X se nazyva konecna, jestlize existuje prirozené Cislo n a prosta
funkce f : X — n.

Definice. Mnozina X se nazyva nekonecna, jestlize neni konecna. :-)

Definice. Pfedpokladejme, ze X je konecna mnozina. Dale necht n je nejmensi pfirozené
Cislo takové, Ze existuje prosta funkce f : X — n. Pak n se nazyva mohutnost mnozZiny
X nebo Ze n je poéet prvki mnoziny X. Potom piseme | X| = n.Jsou-li X aY
kone¢né mnoziny, pficemz soucasné | X| = n a |Y| = n, pak piseme: | X| = |Y].

Véta. Je-li A kone¢nd mnozina a |A| = n, pak jestlize f : A — n je prosta funkce,
potom f je bijekce.

Diikaz. Pfedpokladame, Ze A je kone¢na mnoZina a | A| = n. Pokud je A = (), pak

|A| =0a f: A— 0 je ziejmé surjektivni. Nyni predpokladejme, ze A je neprazdna
mnozina a necht f : A — n je prosta funkce. Zfejmé n # 0. Sporem predpokladejme,
ze funkce f neni surjektivni. Pak existuje k € n takové, ze k € ran(f). Dale necht m je
takové pfirozené ¢islo, pro které platin = m™. Jelikoz k € n = m™, potom bud k = m
nebo k € m. Pokud by platilo K = m, pak f : A — m je prosta funkce. Protoze m < n,

dostavame spor s tim, ze | A| = n. Pokud by platilo k € m, pak polozime:

o) — k, pokud f(a) = m,
) { f(a), pokud f(a) # m.

protoze je funkce f prosta, je funkce g : A — m také prosta. Protoze m € n, plyne

odsud |A| € n, coz je spor s tim, ze |A| = n.
Véta. Necht' A je kone¢nd mnozinaa f: A — A je prosta funkce. Pak f je surjektivni.

Véta. Jsou-li A a B kone¢né mnoziny, pak |A| = | B| pravé tehdy, kdyz existuje bijekce
f:A— B.

Ditikaz. Provadét jej nebudeme.[]

Véta. Pro viechna pfirozena ¢isla n plati |n| = n.

Dirichlettv zasuvkovy princip

Véta (Dirichletiiv zasuvkovy princip). Necht' m a n jsou pfirozena cisla a necht’
f :n — m je funkce. Jestlize m € n, pak f neni prostou funkci.

Dukaz. Pfedpokladejme sporem, Ze m, n jsou pfirozena Cisla takova, ze m < n a
f : n — m je prosta funkce. Protoze je m C n, Ize definovat prostou funkci g : m — n
takto:



g(k) =k

pro véechna k € m. Déle polozme h = go f. Potom h : n — n je prosta funkce. Diky
predchazejici vété je funkce h surjektivni. Tedy

n =ran(h) = {g(f(k)) : k € n} = {f(k) : k € n} = ran(f) C m.

Odtud plyne, ze n C m € n, coz znamena, ze m € m. To je spor s tim, Ze pro kazdé
pfirozené Cislo m platim ¢ m. [J

Dusledek. Necht f : w — A je prosta funkce. Pak je mnozina A nekonec¢na.
Dukaz. Ponechame jako cviceni. [

(Resent cviceni. Sporem predpokladejme, ze A je kone¢nd mnozina. Pak existuje
prirozené Cislo m a prosta funkce f : A — m. Pak je sloZzena funkce h = go f: w —m
také prosta funkce. Pokud je nyni n takové pfirozené Cislo, ze m € n, pak je restrikce
slozené funkce h na n také prosta funkce. Protoze m € n, dostavame spor s
Dirichletovym zasuvkovym principem.)

Véta. Necht X je mnozina je mnozina vsech binarnich posloupnosti, tj.
X={f:f:w—{0,1}}.

Potom X je nekonecna mnozina.

Dtikaz. Nebudeme jej provadét. []

Véta. Je-li A kone¢na mnozina a f: A — A je surjektivni funkce, pak f je prostou funkci
a tedy je bijekci.

Dtikaz. Ponechame jako cviceni. []

(Reseni cviceni. ...)

Véta. Necht' A je kone¢na mnozina. Potom je poten¢ni mnozina P(A) téz konedna.
Ditikaz. Ponechame jako cviceni. [J

(Resent cvicent. ...)

Spocetné mnoziny
Definice. Mnozina X se nazyva spocetna, jestlize existuje prosta funkce f : X — w.
Poznamka. Je-li X konecna mnozina, pak je ziejmé, ze X je spocetna mnozina.

Definice. Rekneme, 7e mnozina X je nekoneénou spocéetnou mnozinou, jestlize X je
nekonecna a spocetnd mnozina.

Priklad. Mnozina X = w je nekonecna spocetna mnozina.



Véta. Necht' A a B jsou mnoziny a necht’ B je spocetna mnozina. Je-li pak funkce
f: A — B prosta, pak A je spocetnd mnozina.

Dukaz. Necht' A, B jsou mnoziny a necht’ B je spoCetna mnozina. Dale necht’

f: A — B je prosta funkce. Z definice spocetnosti plyne existence prosté funkce
g : B — w. Potom slozena funkce h = go f : A — w je prosta funkce. Tudiz A je
spocetna mnozina. [J

Véta. Necht' A, B jsou mnoziny a necht' A C B. Je-li B spocetna mnozina, pak A je

spocetna mnozina.

Dukaz. Necht' A, B jsou mnoziny a necht A C B. Dale necht' i : A — B je injektivni
funkce definovana predpisem i(a) = a pro véechna a € A. Nyni je tvrzeni véty
dusledkem predchozi véty. L]

Véta. Jsou-li A a B spocetné mnoziny, pak i mnozina A U B je spocetna mnozina.

Dukaz. Necht A a B jsou spocetné mnoziny. Z definice spocetnosti existuji prosté
funkce f: A > wag: B — w.

Pro dlkaz posledni véty "Jsou-li A a B spocetné mnoziny, pak i mnozina A U B je

spocetna mnozina" potrebujeme zkonstruovat prostou funkci mnoziny A U B do w.

Definujme funkci h : A U B — w nasledujicim predpisem:

|2 f(x) pokudx € A
h(x)_{2-g(a})+1 pokudz € B\ A

Ovérme, ze funkce h je prosta:

1. Pro libovolné z,y € A plati: pokud h(z) = h(y), pak 2 - f(z) = 2 - f(y), tedy
f(z) = f(y). Jelikoz f je prosta, méame x = y.

2. Pro libovolné z,y € B\ A plati: pokud h(z) = h(y), pak
2-g(x) +1=2-9(y) + 1, tedy g(x) = g(y). Jelikoz g je prostad, mame = = y.

3.Proz € Aay € B\ Aplati: h(z) = 2 - f(x) je sudé €islo, zatimco
h(y) = 2 - g(y) + 1 je liché &islo. Proto h(z) # h(y).

Tim jsme ovérili, ze funkce h je prosta, a tedy mnozina A U B je spocetna. [

Poznamka: Tato konstrukce funguje obecné, at' uz jsou mnoziny A a B disjunktni ¢i
nikoliv. Pokud z lezi v praniku A N B, pfifadime mu hodnotu podle prvni podminky, tedy

h(z) =2- f(x).
Véta. Necht' A je nekonecna spocetna mnozina. Potom existuje bijekce g : w — A.

Duikaz. Jelikoz A je spocetna mnoZina, existuje podle definice prosté funkce f: A — w.
Ozna¢me mnozinu B = f(A) = {f(a) | a € A} C w.

Vzhledem k tomu, ze f je prosta a A je nekonecna, musi byt i mnozina B nekonecna

podmnozina w.



Nyni zkonstruujeme bijekci mezi w a B. Jelikoz B je nekonecna podmnozina w, mizeme
jeji prvky usporadat vzestupné:

B = {by, b1, bs,...}
kde by < b1 < by < ... jsou vsechny prvky mnoziny B usporadané podle velikosti.

Definujme funkci h : w — B predpisem h(n) = b, pro kazdé n € w. Tato funkce

prifazuje Cislu n n-ty nejmensi prvek mnoziny B.
Funkce h je zjevné:

1. Prosta: pokud m # n, pak b, # b,, (jsou to rizné prvky usporadané posloupnosti),

tedy h(m) # h(n).
2. Na: kazdy prvek b € B je n-tym nejmensim prvkem B pro néjaké n € w, takze
h(n) =b.

Tedy h : w — B je bijekce.

Déle uvazujme funkci f~1 : B — A definovanou predpisem f~1(b) = a, kde a € A je
prvek splfiujici f(a) = b. Tato funkce existuje a je bijekce, protoze f je prosta funkce z A
na B.

Nyni mizeme definovat hledanou bijekci g : w — A jako sloZeni funkci:
g=1f""oh
Funkce g je bijekce, protoze je sloZzenim dvou bijekci. Pro kazdé n € w plati:
g(n) = f7'(h(n)) = £~ (ba)

Tim jsme zkonstruovali bijekci g : w — A, coZ bylo pozadovano. [

Nespocetné mnoziny

Definice. Mnozina X se nazyva nespocetna, jestlize neni spocetna, tj. jestlize neexistuje
prosta funkce f : X — w.

Poznamka. Jako prvni Georg Cantor dokazal existenci nespocetnych mnozin. Metodé,
kterou Cantor pouzil, se fikd Cantorova diagonalizace.

Véta. Necht' F je mnozina je mnozina vSech binarnich posloupnosti, tj.
F=Af:f:w—{0,1}}.
Potom X je nespocetna mnozina.

Dtikaz. Predpokladejme sporem, ze X je spocetna mnozina. Nyni z toho, Ze mnoZina
vSech binarnich posloupnosti je nekonecnou mnozinou, plyne, ze existuje bijekce
h:w — F.Prokazdé i € wdefinujme f; = h(t). Potom

‘F:{f07.f17f27"'} ((1))



Nyni definujme binarni posloupnost g : w — {0, 1} takovou, ze pro kazdé i € w je
g # f;. Definujme g takto:

~ [0 pokud f;(7)

9(1) = { 1 pokud fi(3)

pro kazdé i € w. Je ziejmé, ze g : w — {0,1} a tedy g € F. Z definice posloupnosti g
plyne, Ze g # f; pro kazdé i € w. To je spor s tim, Ze h je bijekce. [

Poznamka. Ocislovany seznam vsech binarnich posloupnosti fo, fi, fo2, ... Ize zapsat v
nasledujici vertikalni tabulce:

Jo=U(0), fall), fol2), fol3). fold), fuld). ...}
H=1A00), A(L), A2) A3) H4), A5), -..)
= (L00), (1), A2). f(3), HL(4). 05, ...)
A =1/00), fa(l), fa(2), fa(3). fa(4). f2(5), ...)
Jo = (f4(0), fa(1), fa(2), fa(3), fa(4), S4a(5), ...)
Ss = (6000, 500, f5(2), f5(03). fs(4), f5(5), ...}

Pokud budeme predpokladat, ze napfiklad fo(0) =0, fi(1) =1, f2(2) =0, f3(3) =0,
f4(4) =1a f5(5) = 1, pak posloupnost g bude mit hodnoty g(0) = 1, g(1) = 0,

9(2) =1,9(3) =1,9(4) = 0ag(5) = 0. Tedy posloupnost g se lisi od kazdé
posloupnosti f; pravé v i-tém ¢lenu. Timto zplsobem Cantor dokézal, Ze mnozina vsech

binarnich posloupnosti je nespocetna.

fo={ 0 . foll). fo(2). fo(3), fo(4). fu(5). .
=0, 1 ., A1) [3) [d), AG). ...
L= 1{(R0), (1), 0 . £3) A4 L6). ...
fi=1f0) fi(l) f2), 0, fa(4), fa(5), ..
o= (fa(0), fall), 2y, i3y, 1, f1i5), ...
fi =000, f5(1), f5(2), f503). fs(d4). 1, ...)

g=(1 ., 0, 1., 1., 0, 0,..)

Véta. Necht' A a B jsou mnoziny. Je-li mnozina A nespocetna a existuje prosta funkce
g: A — B, pak B je nespocetna mnozina.

Dtikaz. Dlkaz se provede sporem. Pfedpokladame, Ze mnoZina B je naopak spocetna.
Nyni protoze je funkce g : A — B prosta, plyne odsud, ze je i mnozina A spocetna. To je

spor s tim, Ze mnozina A je nespocetna. [

Lemma. Existuje prosta funkce f : F — R, kde F je mnozZina vSech binarnich

posloupnosti a R je mnozina realnych Cisel.



Véta. Mnozina R je nespocetnd mnozina.

Dtikaz. Jedna se o dlsledek predchozi véty a lemmatu. []

Ekvipotence mnozin

Definice. Necht A a B jsou mnoziny. Rekneme, Ze mnoziny A a B jsou ekvipotentni
nebo Ze maji stejnou mohutnost, jestlize existuje bijekce f : A — B. V takovém pfipadé
piseme |A| =. |B|.

Poznamka. Jsou-li A a B kone¢né mnoziny, pak |A| =, |B| pravé tehdy, kdyz

Al = |B|
. Tedy pro konecné mnoziny je ekvipotence shodné s rovnosti poctu prvkd.

Ekvipotence w a Z resp. Q
Véta. |w| =, |Z] a |w| =¢ |Q].
Dukaz.
Konstrukce bijekce f : w — Z:
0, n =0,
f(n) = k, n=2k—1,k>1,
—k, n=2k k>1.
Popis.
- Pron = 0 mame f(0) = 0.
- Prolichd n > 1 (t. n = 2k — 1) pfifadime f(n) = k > 0.
- Pro suda n > 2 (tj. n = 2k) pfitadime f(n) = —k < 0.

Injektivita.

* Pokud ni,n2 > 0 obaliché a f(n1) = f(n2), pak k1 = k2 =
ny =2k; — 1 =2ky — 1 = n,.

* Analogicky pro obé suda ni, ns.

* Nelze mit rovnost mezi hodnotou kladnou a zapornou ani mezi nulou a které-koliv
nenulovou hodnotou, nebot znaménka (resp. nula) se lisi.

Surjektivita. Kazdé z € Z je bud 0 (obratme n = 0), nebo kladné (z = k > 0, ma
protéjsek n = 2k — 1), nebo zadporné (z = —k < 0, ma protéjsek n = 2k).

Tim je f bijekci a tedy |w| = |Z|.

Cast 1: Jiny diikaz toho, ze |w| =, |Z|

Pfipomenme, ze w = {0, 1, 2,3, ...} je mnozina pfirozenych ¢isel (véetné nuly) a
Z=A...,-2,-1,0,1,2,...} je mnozina celych ¢isel. Mnoziny A a B jsou

ekvipotentni, piseme |A| =, | B|, pokud existuje bijekce f : A — B.




Potfebujeme najit bijekci f : w — Z. Definujme funkci f nasledovné:

f(n) = n/2 pokud n je sudé
| —(n+1)/2 pokud n je liché

Ovérme, ze f je bijekce:
1. f je prosta (injektivni): Predpokladejme, ze f(n1) = f(n2) proni,n2 € w.

* Pokud jsou ny, ng obé suda, pak ny /2 = ny /2, z ¢ehoz plyne n; = ny.

* Pokud jsou n1, ng obé licha, pak —(n1 4+ 1)/2 = —(ng + 1) /2, z ¢ehoz plyne
n1+1=mn9+ 1, atedyny = no.

* Pokud je n; sudé a n, liché, pak f(n;) =n;/2>0a
f(n2) = —(n2 + 1)/2 < 0. Protoze nezaporné ¢islo se nemaze rovnat
zépornému Cislu, f(ny) # f(ng). Tento pfipad tedy nem(ze nastat, pokud
f(n1) = f(n2).

Funkce f je tedy prosta.

2. f je na (surjektivni): Necht z € Z je libovolné celé Cislo. Hledame n € w takové, ze
f(n) =z

® Pokud z > 0, zvolme n = 2z. Protoze z > 0, je n sudé pfirozené Cislo (nebo
nula), tedy n € w. Pak f(n) = f(22) = (22)/2 = =

* Pokud z < 0, polozme z = —k pro néjaké k € Z, k > 0. Hledame liché n
takové, ze f(n) = —(n + 1)/2 = —k. To znamena (n + 1)/2 = k, neboli
n+1=2k atedyn =2k —1.Protozek > l,jen=2k—1>2(1)—-1=1
. Tedy n je liché prirozené Cislo, n € w. Pak
fn)=f2k—1)=—(2k—1)+1)/2=—(2k)/2 = -k =z

Pro kazdé z € Z jsme nasli n € w takové, ze f(n) = z. Funkce f je tedy na.

Protoze f : w — Z je prosta i na, je to bijekce. Tim jsme dokazali, ze |w| =, |Z|.
Cast 2: Dikaz |w| =, |Q|

Pfipomenme Q = {p/q | p € Z,q € N, ¢ # 0} je mnoZina racionalnich ¢isel. Budeme
postupovat tak, Ze ukazeme, Ze QQ je nekonecna spocetna mnozina. Podle véty uvedené v
textu ("Necht’ A je nekonec¢na spocetna mnozina. Potom existuje bijekce g : w — A.")
pak bude platit |w| =, |Q].

1. Q je nekoneéna: Mnozina celych cisel Z je podmnozinou Q (Z C Q, protoze kazdé
z € Z Ize psat jako z/1). Jelikoz jsme v ¢asti 1 ukazali, ze Z je ekvipotentni s
nekonecnou mnozinou w, je Z nekonecna. Proto i jeji nadmnozina Q musi byt

nekonecna.

2. Q je spocetna: Podle definice je mnozZina spocetna, pokud existuje prosta funkce z
ni do w. Pouzijeme vétu: "Necht A a B jsou mnoziny a necht' B je spocetna
mnozina. Je-li pak funkce f : A — B prosta, pak A je spocetna mnozina." Ukazeme,
Ze existuje prosta funkce z QQ do néjaké znamé spocetné mnoziny.

* Uvazujme mnozinu Z x N. Tato mnozina je spocetna.



(DUkaz spocetnosti Z x N: Vime, ze |Z| =, |w| a [N| =, |w]| (napf. bijekce

n+— n+ 1zwdo N ajeji inverze). Existuji tedy bijekce f7 : Z - wa fy : N — w.
Pak funkce F': Z x N — w X w definovana jako F(z,n) = (fz(2), fn(n)) je
bijekce. MnoZina w X w je spocetna, protoze existuje prosta funkce h : w X w — w,
napfiklad h(a,b) = 223 (jednoznacnost prvociselného rozkladu zarucuje prostotu)
nebo Cantorova parovaci funkce. Protoze existuje bijekce z Z x N do spocetné
mnoziny w X w, je i Z X N spocetna.)

* Nyni zkonstruujme prostou funkci 5 : Q — Z x N. Kazdé racionalni Cislo g € Q
Ize jednozna¢éné zapsat ve tvaru ¢ = p/r, kdep € Z, 7 € N (r > 1) a p, r jsou
nesoudélna (jejich nejvétsi spolecny délitel je 1). Definujme j(q) = (p, 7).
Ovérme, ze j je prosta. Necht g1, g2 € Q a j(g1) = j(g2). To znamena, ze
(p1,71) = (pa,72), kde g1 = py/7r1 @ g = py/ 7o jsou zapisy v zékladnim tvaru.
Rovnost dvojic znamena p; = p2 a 1 = r2. Potom ale
q1 = p1/r1 = p2/r2 = q2. Funkce j je tedy prosta.

* Mame prostou funkci j : Q — Z x N a vime, Ze mnozina Z x N je spocetna.
Podle vyse zminéné véty je tedy i mnoZzina QQ spocetna.

3. Zavér: Dokéazali jsme, ze Q je nekonecna a spocetna mnozina. Podle véty "Necht A
je nekonecna spocetna mnozina. Potom existuje bijekce g : w — A." tedy existuje
bijekce g : w — Q. To znamend, ze |w| = |Q)|.

Tim je dlikaz obou casti véty dokoncen. [

Striktni nerovnost mezi mohutnostmi

Definice. Rekneme, Ze mnozina A ma striktné mengi mohutnost nez mnozina B a
piseme: |A| <. |B
g:A— B.

, jestlize existuje prosta funkce f : A — B a neexistuje bijekce

Véta (G. Cantor). Necht' A je libovolna mnoZina. Potom |A| <, |P(A)

potencni mnozina mnoziny A.

, kde P(A) je

Dukaz. Musime ukézat dvé véci:

1. Existuje prosta funkce f : A — P(A).
2. Neexistuje bijekce (a tedy ani surjekce) g : A — P(A).

Ad 1. Definujme funkci f : A — P(A) predpisem f(a) = {a} pro kazdé a € A. Funkce
f pfifazuje kazdému prvku a z mnoziny A jednoprvkovou mnozinu {a}, ktera je prvkem
potenéni mnoziny P(A). Ovéime, ze f je prosta. Necht aq,as € A a f(ay) = f(as). To
znamena {a1} = {a2}. Dvé mnoziny jsou si rovny pravé tehdy, kdyz maji stejné prvky.
Proto musi platit a; = az. Funkce f je tedy prosta.

Ad 2. Pfedpokladejme sporem, Ze existuje surjektivni funkce g : A — P(A). To
znamena, ze ke kazdé podmnoziné S C A (tj. ke kazdému S € P(A)) existuje alespon
jedno a € A takové, ze g(a) = S.

Nyni zkonstruujme specifickou podmnozinu D mnoziny A, znamou jako Cantorova
diagonalni mnozina:



D={acAlagg(a)}

Mnozina D obsahuje pravé ty prvky a z A, které nepatii do mnoziny g(a), kterou jim
funkce g pfirazuje. Jelikoz D je podmnozina A, plati D € P(A).

ProtoZe jsme predpokladali, ze g je surjektivni, musi existovat néjaky prvek d € A takovy,
ze g(d) = D. Nyni se ptejme: Plati d € D nebo d ¢ D?

* Ptipad 1: Predpokladejme, ze d € D. Podle definice mnoziny D, pokud d € D, pak
musi platit d & g(d). Ale vime, Ze g(d) = D. Dosazenim dostavame: pokud d € D,
pak d € D. To je spor.

¢ Pfipad 2: Predpokladejme, ze d ¢ D. Podle definice mnoziny D, pokud d ¢ D,
znamena to, ze prvek d nespliiuje podminku pro zafazeni do D, tj. neplati d ¢ g(d).
Musi tedy platit opak: d € g(d). Ale vime, ze g(d) = D. Dosazenim dostavame:
pokud d € D, pak d € D. To je opét spor.

Oba mozné pripady vedou ke sporu. To znamena, ze nas plvodni predpoklad o existenci
surjektivni funkce g : A — P(A) musi byt nepravdivy. Pokud neexistuje surjektivni
funkce z A do P(A), nemUze existovat ani bijektivni funkce z A do P(A).

Zavér: Ukazali jsme, ze existuje prosta funkce f : A — P(A) a ze neexistuje bijekce
g: A — P(A). Podle definice striktné mensi mohutnosti tedy plati |A| <. |P(A)|.O

Véta (G. Cantor). |w| <. |R|. Tedy mnoZina R méa vétsi mohutnost nez mnozina w.

Hypotéza kontinua a metoda forcingu

Hypotéza kontinua. Hypotéza kontinua je hypotéza, Ze neexistuje mnozina A C R

takova, ze |w| <. |A| <. |R|. Tedy mezi mnozinami w a R neexistuje zadna jind mnozina.

Kurt Godel v roce 1940 ukazal, ze hypotéza kontinua je konzistentni s axiomy teorie
mnozin ZFC (nelze ji v ZFC vyvratit). Paul Cohen v roce 1963 dokazal, ze i jeji negace je
konzistentni s ZFC (nelze ji v ZFC dokéazat). Dohromady to znamena, ze hypotéza
kontinua je na axiomech ZFC nezavisla.

Metoda forcingu. Paul Cohen pro dikaz nezavislosti hypotézy kontinua vyvinul metodu
zvanou forcing. Tato metoda umoznuje konstruovat nové modely teorie mnozin, ve
kterych plati nebo neplati urcité vyroky, jako je hypotéza kontinua.

Definice. Necht A a B jsou mnoziny. Rekneme, 7e mnozina A ma mohutnost mensi
nebo rovnou nez mnozina B a piseme |A| <. |B
f:A— B.

, jestlize existuje prosta funkce

Cantor-Bernstein-Schréderova véta
Véta (Cantor-Bernstein-Schréoderova). Necht' A a B jsou mnoziny. Pak plati:
Al <c |Bla|B| < |[A] = |A] =c|B.

Dukaz.



Predpokladame, ze existuji prosté (injektivni) funkce f : A — Bag: B — A. Nasim
cilem je zkonstruovat bijektivni funkci h : A — B.

Pro libovolny prvek € A nebo x € B mizeme sledovat jeho "predky” pomoci
inverznich funkci =% a ¢! (pokud existuji). Pro dany prvek a € A miZzeme vytvorit

posloupnost predki:

a, g (), flg (), g (f (g (a)),

Tato posloupnost je definovana pouze tehdy, pokud jsou pfislusné inverzni obrazy
definovany. Jelikoz f a g jsou pouze injektivni, nemusi byt definovany pro vsechny prvky.
Posloupnost predkd pro prvek a konci, pokud narazime na prvek, ktery nema predka (tj.
prvek v A, ktery neni v obrazu g(B), nebo prvek v B, ktery neni v obrazu f(A)).

Rozdélime mnozinu A na tfi disjunktni podmnoziny podle plvodu jejiho fetézce predka:

1. A4: Mnozina prvkl a € A, jejichz fetézec predkd konci v mnoziné A (tj. konci
prvkem ag € A\ g(B)).

2. Ap: Mnotzina prvkl a € A, jejichz fetézec predkd konci v mnoziné B (tj. konci
prvkem by € B\ f(A)).

3. Ay MnoZina prvkid a € A, jejichZ fetézec predki je nekonecny.

Analogicky rozdélime mnozinu B na tfi disjunktni podmnoziny B4, Bp, B.
Lze ukazat, Ze:

® Funkce f zobrazuje A4 do By, Agdo Bga A, do B,

* Funkce g zobrazuje B4 do A4, Bp do Bp a By, do Ax.

® Restrikce f\AA : Ay — By je bijekce.

® Restrikce f‘Aw : Ao, — By je bijekce.

* Restrikce g5 : Bp — A je bijekce. Proto jeji inverze (g|BB)’1 : Ap — Bpje také
bijekce.

Nyni mdzeme definovat bijekci h : A — B nasledovné:

h(a) = f(a) pokud a € A4 neboa € A
(9/p,) '(a) pokuda € Ap

Tato funkce h je definovana pro vsechnya € A = A4 U Ap U A. Funkce h je bijekdi,
protoze je slozena z bijekci na disjunktnich ¢astech defini¢niho oboru a oboru hodnot:

e h mapuje A4 bijektivné na B4 pomoci f.

e h mapuje Ay bijektivné na By, pomoci f.

* h mapuje Ap bijektivné na Bz pomoci (g\BB)’l.
Jelikoz B = B4 U Bp U By a tyto mnoZiny jsou disjunktni, je h bijekci z A do B. Tim je
existence bijekce dokazéna a plati |A| =, |B|. O

(Alternativni dukazova konstrukce)



Necht f: A — Bag: B — Ajsou injektivni. Definujme mnozinu C = A\ g(B). Toto
jsou prvky v A, které nemaji predka v B skrze g. Definujme mnozinu "potomkd” C'v A
opakovanou aplikaci g o f:

o)

A= J(go N™(O)=CU(go N(C)U(go f)(O)U...

n=0
kde (g o f)° je identita na A. Definujme funkci h : A — B takto:

[ f(a) pokud a € A*
ha) = {g_l(a) pokud a ¢ A*

* Korektnost definice: Pokud a ¢ A* paka ¢ C = A\ g(B), coz znamena
a € g(B). Protoze g je injektivni, existuje pravé jedno b € B takové, ze g(b) = a.
Toto b oznacujeme g—!(a). Funkce h je tedy dobfe definovana.

* Injektivita: Ukaze se, ze pokud a1 # ag, pak h(a1) # h(a2) rozborem pfipad(, zda
a1, az patii ¢ nepatii do A*. Klicovym krokem je ukazat, 7e f(A*)ag (A \ A%)
jsou disjunktni podmnoziny B.

* Surjektivita: Pro libovolné b € B se ukaze, ze existuje a € A takové, ze h(a) = b.
Rozlisi se pfipady, zda g(b) patfi do A* ¢i nikoliv.

Jelikoz h je injektivni i surjektivni, je to bijekce a plati |A| =. |B|. O
Véta. |R| =, |P(w)|.

Dikaz. Pouzijeme Cantor-Bernstein-Schroderovu vétu. K tomu potfebujeme ukazat

existenci dvou prostych funkci:

1. Prosté funkce f : R — P(w).
2. Prosté funkce g : P(w) — R.

Ad 1: Existence prosté funkce f : R — P(w)

Vime, Ze mnozina racionalnich ¢isel Q je spocetnd, tedy |Q| =, |w|. Existuje tedy bijekce
b: Q — w. Tato bijekce indukuje bijekci B : P(Q) — P(w) definovanou jako
B(S) ={b(q) [ g€ S} pro S C Q.

Definujme funkci h : R — P(Q) predpisem:
h(z) ={qcQlq¢<a}

Ukazeme, ze h je prosta. Necht z,y € R a  # y. Bez Gjmy na obecnosti
predpokladejme x < y. Podle vlastnosti hustoty racionalnich ¢isel v realnych Cislech
existuje qo € Q takové, ze x < qo < y. Potom gy € h(y) (protoze qp < y), ale go & h(x)
(protoze gy > x). Tudiz h(x) # h(y). Funkce h je tedy prosta.

Nyni definujme f : R — P(w) jako sloZeni f = B o h. JelikozZ h je prosta a B je bijekce
(tedy také prostd), je jejich slozeni f také prosté funkce. Tim jsme dokéazali existenci
prosté funkce z R do P(w), coz znamena |R| <. |P(w)|.

Ad 2: Existence prosté funkce g : P(w) — R



Pfipomenme, Zze P(w) je mnozina vsech podmnozin w = {0, 1,2,...}. Kazdé
podmnoziné § C w mlzeme jednoznacné priradit jeji charakteristickou funkci

xs :w — {0,1}, kde xs(n) = 1 pokud n € S a xs(n) = 0 pokud n ¢ S. Oznaéme F
mnozinu vSech takovych charakteristickych funkci (bindrnich posloupnosti). Existuje
zfejma bijekce mezi P(w) a F, takze |P(w)| =, |F|. Staci tedy ukazat existenci prosté
funkceg: F — R.

Definujme funkci g : F — R nasledovné. Pro f € F, f = (£(0), f(1), f(2),...),

poloZme:

9(f) = Z ?;Sﬁz

Tato funkce zobrazuje binarni posloupnost f na realné ¢islo v intervalu [0, 1/2] zapsané v
ternarni (trojkové) soustavé jako 0.£(0) f(1) f(2) .. .3. V tomto zapisu se vyskytuji pouze

Cislice 0 a 1.

Ukazeme, Ze g je prosta. Necht' fi, fo € F a f1 # fa. Pak existuje nejmensi index k € w
takovy, ze fi(k) # f2(k). Bez Gjmy na obecnosti pfedpokladejme fi(k) = 0a
f2(k) = 1. Potom:

1 fi(n) 0 <. fi(n)
a(fy) = ﬁ T T Zk: 31n+1

n=0

« L) 1 = fa(n)
9(f2) = Z wil T ogEn T Z n+1
=0 3 3 n=k+1 3
Protoze fi(n) = fa(n) pron < k, mame:

a(fs) — 9(f1) = 3,}H ;3 LAl

n=k+1 3n+1

Odhadneme sumu:

= fa(n) - filn)] &K
= Z - 3n-i-11 = Z 3n+1

Tato geometricka fada ma soucet:

o0

11 1 1 (.11 11
n;13n+1_3k+2+3k+3+"'_3k+2 +§+?+“' T 32 1-1/3 3

Tedy:

1_§:f1(n)>1 <1 1 1

3k+1 i 3n+1 - 3k+1 el 37L+1 3k+1 2 . 3k+1 2 .

g(f2) —g(f) >

Proto g(f1) # g(f2). Funkce g je tedy prosta. (Alternativné: Reprezentace realného ¢isla v
ternarni soustavé je nejednoznacna pouze tehdy, konci-li nekonecnou posloupnosti Cislic
2. Jelikoz nase reprezentace pouziva pouze Cislice 0 a 1, je vzdy jednoznacna.)



, existuje i prosta funkce z

Existuje tedy prosta funkce g : F — R. Protoze |P(w)| =, |F
P(w) do R, coz znamené | P(w)| <. |R].

Zavér: Ukazali jsme, ze |R| <. |P(w)| a | P(w)| <. |R|. Podle Cantor-Bernstein-
Schréderovy véty z toho plyne, ze |R| =, | P(w)|. O



