
Přirozená čísla

Úvod
Definice. Pro každou množinu  definujeme tzv. následovníka  jako množinu:

Definice.

Důsledkem uvedených definic dostáváme:

Induktivní množiny
Připomeňme si

Axiom nekonečna. Existuje množina  taková, že jejím elementem je prázdná množina
(tj. ) a pro každé  platí 

Definice. Množina  se nazývá induktivní, jestliže jsou splněny podmínky:

1. 
2. 

Definice. Množina  se nazývá přirozeným číslem, jestliže pro každou induktivní
množinu  je 

Poznámky.

1. Množina  je přirozeným číslem jak plyne z definice induktivní množiny.
2. Axiom nekonečna tvrdí, že existuje aspoň jedna induktivní množina.
3. Třída  je množina v důsledku axiomu

nekonečna.

Definice. Množina všech přirozených čísel se bude značit symbolem 

Poznámka. Platí tedy 

Věta. Množina  je induktivní množinou a je podmnožina každé induktivní množiny.
Tudíž lze říci, že množina  je nejmenší induktivní množinou.

x x+

x+ = x ∪ {x}.

0 = ∅.

1 = 0+ = 0 ∪ {0} = {0}.

2 = 1+ = 1 ∪ {1} = {0, 1}.

3 = 2+ = 2 ∪ {2} = {0, 1, 2}.

4 = 3+ = 3 ∪ {3} = {0, 1, 2, 3}.

0 ∈ 1 ∈ 2 ∈ 3 ∈ 4 ∈ 5 ∈ ⋯

0 ⊆ 1 ⊆ 2 ⊆ 3 ⊆ 4 ⊆ 5 ⊆ ⋯

A

∅ ∈ A x ∈ A x+ ∈ A.

I

∅ ∈ I,

(∀a ∈ I)(a+ ∈ I).

n

I n ∈ I.

∅

{x : x náleží do každé induktivní množiny }

ω.

n ∈ ω ⇔ ∀I(I je induktivní  ⇒ n ∈ I).

ω

ω



Důkaz. (a) Ukažme, že množina  je induktivní. Tedy ukažme, že

1. 
2. 

Protože pro každou induktivní množinu  je , plyne odsud, že  Dále
předpokládejme, že . Potom z definice  plyne, že pro každou induktvní množinu 
je  Odtud pro každou induktivní množinu  platí, že  Tedy  Ukázali
jsme, že  je induktivní množinou. Nakonec zvolme libovolnou induktivní množinu  a
ukažme, že  Je-li , potom nutně  Tedy skutečně platí  

Důsledek. Je-li  induktivní množina, potom platí 

Princip matematické indukce. Předpokládejme, že  je logická formule, kde  je
tzv. volná (nekvantifikovaná) proměnná. Abychom nyní dokázali tvrzení

postupujeme podle následujícího schématu. Položíme  Potom je
zřejmě  Pokud nyní dokážeme:

1. 
2. 

potom je množina  induktivní a tudíž  To znamená, že platí tvrzení (1).

Jako ukázku si dokažme následující tvrzení:

Věta. Pro každé  platí buď  nebo pro jisté  platí 

Důkaz. Položme  Potom zřejmě 
Nechť nyní  Z definice množiny plyne, že pak  nebo pro jisté  je

 Potom je buď  nebo  V prvním případě protože  je
tudíž  Ve druhém případě jelikož  je i  Tudíž pak

 Takto jsme dokázali, že je-li  potom je  tj. dokázali jsme
induktivnost množiny  Z principu matematické indukce pak vyplývá dokazované
tvrzení. 

Definice. Množina  se nazývá tranzitivní, jestliže

nebo

tj. každý element množiny  je též její podmnožinou.

Tranzitivnost množiny  je vlastnost, kterou lze formulovat také takto:

Příklad. (a) Množina  je tranzitivní množinou.

ω

∅ ∈ ω,

(∀a ∈ ω)(a+ ∈ ω).

I ∅ ∈ I ∅ ∈ ω.

a ∈ ω ω I

a ∈ I. I a+ ∈ I. a+ ∈ ω.

ω I

ω ⊆ I. x ∈ ω x ∈ I. ω ⊆ I. □

I ⊆ ω I = ω.

P(n) n

(∀n ∈ ω)P(n), (1)

I = {n ∈ ω : P(n)}.

I ⊆ ω.

0 ∈ I,

(∀n ∈ ω)(n ∈ I ⇒ n+ ∈ I),

I I = ω.

n ∈ ω n = 0 k ∈ ω n = k+.

I = {n ∈ ω : n = 0  ∨  (∃k ∈ ω)(n = k+)}. 0 ∈ I.

n ∈ I. n = 0 k ∈ ω

n = k+. n+ = 0+ n+ = (k+)+. 0 ∈ ω,

n+ = 0+ ∈ I. k ∈ ω, k+ ∈ ω.

n+ = (k+)+ ∈ I. n ∈ I, n+ ∈ I,

I.

□

A

(∀a ∈ A)(a ⊆ A),

∀a(a ∈ A ⇒ a ⊆ A).

A

A

(∀x)(∀y)  (x ∈ y ∈ A ⇒ x ∈ A).

A = ∅



(b) Množina  je tranzitivní množinou.

(c) Množina  není tranzitivní množinou!

Poznámka. Lze se snadno přesvědčit, že tranzitivnost množiny  je ekvivalentní
vlastnosti

Věta. Jsou-li  množiny, potom platí

Důkaz. Dokažte sami! 

Řešení.

Abychom dokázali, že ⋃(A ∪ B) = (⋃A) ∪ (⋃B), musíme ukázat oboustrannou inkluzi.

1) Nejprve dokážeme, že ⋃(A ∪ B) ⊆ (⋃A) ∪ (⋃B):
Nechť x ∈ ⋃(A ∪ B). To znamená, že existuje množina C ∈ (A ∪ B) taková, že x ∈ C.
Protože C ∈ (A ∪ B), platí buď C ∈ A nebo C ∈ B.

Pokud C ∈ A, pak x ∈ C a C ∈ A, což znamená x ∈ ⋃A. Proto x ∈ (⋃A) ∪ (⋃B).
Pokud C ∈ B, pak x ∈ C a C ∈ B, což znamená x ∈ ⋃B. Proto x ∈ (⋃A) ∪ (⋃B).

V obou případech je x ∈ (⋃A) ∪ (⋃B), tedy ⋃(A ∪ B) ⊆ (⋃A) ∪ (⋃B).

2) Nyní dokážeme, že (⋃A) ∪ (⋃B) ⊆ ⋃(A ∪ B):
Nechť x ∈ (⋃A) ∪ (⋃B). To znamená, že buď x ∈ ⋃A nebo x ∈ ⋃B.

Pokud x ∈ ⋃A, pak existuje množina C ∈ A taková, že x ∈ C. Protože C ∈ A, platí také
C ∈ (A ∪ B). Proto x ∈ C a C ∈ (A ∪ B), což znamená x ∈ ⋃(A ∪ B).

Pokud x ∈ ⋃B, pak existuje množina D ∈ B taková, že x ∈ D. Protože D ∈ B, platí také
D ∈ (A ∪ B). Proto x ∈ D a D ∈ (A ∪ B), což znamená x ∈ ⋃(A ∪ B).

V obou případech je x ∈ ⋃(A ∪ B), tedy (⋃A) ∪ (⋃B) ⊆ ⋃(A ∪ B).

Protože jsme dokázali obě inkluze, ⋃(A ∪ B) ⊆ (⋃A) ∪ (⋃B) a (⋃A) ∪ (⋃B) ⊆ ⋃(A ∪ B), platí
rovnost ⋃(A ∪ B) = (⋃A) ∪ (⋃B). 

Věta. Je-li  tranzitivní množinou, potom 

Důkaz. Předpokládejme, že  je tranzitivní množinou. Potom

A = 1 = {0}

A = {1}

A

⋃A ⊆ A.

A,B

⋃(A ∪ B) = (⋃A) ∪ (⋃B).

□

□

a ⋃(a+) = a.

a



Tudíž platí  

Věta. Každé přirozené číslo je tranzitivní množinou.

Důkaz. Důkaz provedeme podle principu matematické indukce. Nejdříve položme

Je zřejmé, že pak je  protože je  Nechť dále je  Potom je  tranzitivní
množinou. Ukažme, že i následovník  je trnazitivní množinou. Nyní v
důsledku předchozí věty máme  Dále zřejmě  Odtud tedy plyne, že

 To dokazuje tranzitivnost množiny  (viz předchozí poznámka!) Potom
tudíž je  To dokazuje tranzitivnost množiny  a tvrzení věty pak plyne z principu
matematické indukce.

Samostatné cvičení. Dokažte následující tvrzení. Zobrazení  deinované pro
každé  předpisem  je prostým zobrazením.

Věta. Množina všech přirozených čísel  je tranzitivní množinou.

Důkaz. Provádět podrobně nebudeme. V podstatě stačí dokázat toto:

Položíme  a dále postupujeme podle schématu uvedeném v
principu matematické indukce. 

Samostatné cvičení. Dokažte si, že platí následující tvrzení:

Princip rekurze
Věta. Nechť  je množina a nechť  Dále nechť  je funkce. Potom
existuje jediná funkce  taková, že

1. 
2.  pro všechna 

říkáme, že funkce  podmínkami 1. a 2. definována rekurentně.

Důkaz. Máme tedy dokázat, že existuje jediná funkce  splňující podmínky 1. a
2.

Důkaz si rozdělíme do dvou částí: důkaz existence a důkaz jednoznačnosti.

⋃(a+) = ⋃(a ∪ {a})

= ⋃ a ∪⋃{a}   podle předchozí věty

= (⋃ a) ∪ a    protože ⋃{a} = a

= a    protože je ⋃ a ⊆ a.

⋃(a+) = a. □

I = {n ∈ ω : n je tranzitivní množinou}.

0 ∈ I 0 = ∅. n ∈ I. n

n+ = n ∪ {n}

⋃n+ = n. n ⊆ n+.

⋃n+ ⊆ n+. n+

n+ ∈ I. I

□

σ : ω → ω

n ∈ ω σ(n) = n+

ω

(∀n ∈ ω)(n ⊆ ω).

I = {n ∈ ω : n ⊆ ω}

□

(∀n ∈ ω)(n ≠ n+).

A a ∈ A. f : A → A

h : ω → A

h(0) = a,

h(n+) = f(h(n)), n ∈ ω.

h

h : ω → A



Existence.

Defujme binární relaci  následovně:

 právě tehdy, když existuje konečná posloupnost  prvknů z 
taková, že

 pro všechna 

Nyní dokažme matematickou indukcí podle  následující tvrzení:

Základní krok indukce. Pro  chceme dokázet, že existuje právě jedna 
taková, že  To plyne z toho, že pro  máme . Jednoznačnost je
zřejmá.

Hlavní krok indukce. Předpokládejme, že pro nějaké  existuje právě jedno 
takové, že  Ukažme, že pak existuje právě jedno  takové, že

Potřebujeme tedy dokázat existenci konečné posloupnosti  prvků z 
takové, že   pro všechna  a  Podle
indukčního předpokladu existuje  členná posloupnost  taková, že

  pro všechna  a  A  je určeno
jednoznačně. Pokud nyní položíme , pak  a element
 je jediný element, pro který platí 

Podle principu matematické indukce tedy pro každé  existuje právě jeden prvek
 takový, že  Tedy relace  je funkce na  a  Označme

Ověřme, že  splňuje podmínky 1. a 2.:

1.  protože 

2. Pro každé  máme  protože z konstrukce  vyplývá, že
pokud  pak  Jelikož  a , máme

Existuje tedy funkce  splňující podmínky 1. a 2.

Jednoznačnost

Předpokládejme, že existují dvě funkce  splňující:

1. 

2.  a  pro všechna 

R ⊆ ω × A

⟨n, b⟩ ∈ R b0, b1, … , bn A

b0 = a,

bi+1 = f(bi) i = 0, 1, … ,n − 1.

bn = b.

n

(∀n ∈ ω)(∃!b ∈ A)(⟨n, b⟩ ∈ R).

n = 0 b ∈ A

⟨0, b⟩ ∈ R. b = a b0 = a

k ∈ ω bk ∈ A

⟨k, bk⟩ ∈ R. bk+1 ∈ A

⟨k + 1, bk+1⟩ ∈ R.

b0, b1, … , bk+1 A

b0 = a, bi+1 = f(bi) i = 0, 1, … , k bk+1 = b.

k + 1 b0, b1, … , bk
b0 = a, bi+1 = f(bi) i = 0, 1, … , k − 1 bk = b. bk

b = bk+1 = f(bk) (k + 1, bk+1) ∈ R

b ⟨k + 1, bk+1⟩ ∈ R.

n ∈ ω

b ∈ A ⟨n, b⟩ ∈ R. R ω R ⊆ ω × A.

h = R.

h

h(0) = a ⟨0, a⟩ ∈ R.

n ∈ ω h(n+) = f(h(n)) R

⟨n, b⟩ ∈ R, ⟨n+, f(b)⟩ ∈ R. h(n) = b h(n+) = f(b)

h(n+) = f(h(n)).

h : ω → A

h1,h2 : ω → A

h1(0) = h2(0) = a,

h1(n+) = f(h1(n)) h2(n+) = f(h2(n)) n ∈ ω.



Dokažme matematickou indukcí podle  následující tvrzení:

Základní krok indukce. Pro  máme  Tedy 

Hlavní krok indukce. Předpokládejme, že pro nějaké  platí 

Příklad. Uvažujme funkci  danou předpisem , kde  je
daná konstanta. Dále nechť je dáno  Nyní podle principu rekurze existuje jediná
funkce  taková, že  a pro každé  je

 Funkce je jak je vidět reálnou posloupností,
která se nazývá aritmetickou posloupností s diferencí .

Samostatné cvičení. Aplikujte větu o rekurzi podobným způsobem a dokažte existenci
tzv. geometrické posloupnosti s kvocientem 

Peanovy axiomy
Italský matematik Giuseppe Peano ve své knize z roku 1889 publikoval systém axiomů
definující množinu přirozených čísel na jejichž základě je možné rozvinout teorii
přirozených čísel a následně zavést další číselné množiny jako je množina celých,
racionálních a reálných čísel.

Nejdříve přešleme následující definici:

Definice. Nechť  je množina,  a nechť  Řekneme, že množina  je
uzavřená vzhledem k funkci , jestliže pro všechna  platí 

Definice uspořádané trojice. Mějme dány tři množiny  Potom definujeme:

Definice. Uspořánou trojici , kde  je množina,  je funkce a 
nazveme Peanovým systémem, jsou-li splněny následující podmínky:

1. 
2.  je prostá funkce.
3. Pro všechna  jestliže  a množina  je uzavřená vůči funkci  pak platí

Třetí axiom se nazývá axiom matematické indukce.

Pokud budeme uvažovat funkci  definovanou předpisem:  pro
všechna , pak platí následující

Věta. Uspořádaná trojice  tvoří Peanův systém.

Důkaz. Proveďte jako samostatné cvičení. 

Aritmetika na množině 

n

(∀n ∈ ω)(h1(n) = h2(n)).

n = 0 h1(0) = h2(0) = a. h1(0) = h2(0).

k ∈ ω h1(k) = h2(k).

f : R → R f(x) = x + d d ∈ R

a ∈ R.

h : ω → R h(0) = a n ∈ ω

h(n + 1) = h(n+) = f(h(n)) = h(n) + d.

d

q.

N S : N → N A ⊆ N . A

S x ∈ A S(x) ∈ A.

x, y, z.

⟨x, y, z⟩ := ⟨⟨x, y⟩, z⟩.

⟨N ,S, e⟩ N S : N → N e ∈ N

e ∉ ran(S).

S

A ⊆ N e ∈ A A S,

A = N .

σ : ω → ω σ(n) = n+

n ∈ ω

⟨ω,σ, 0⟩

□

ω

https://cs.wikipedia.org/wiki/Giuseppe_Peano


Věta. Nechť  a  jsou dané funkce. Potom existuje jediná funkce
 taková, že pro každé  platí:

1. 
2.  pro všechna 

Důkaz. Z předpokladů plyne s ohledem na princip rekurze, že pro každé  existuje
jediná funkce  taková, že

(a) 

(b)  pro všechna 

Takto je definována funkce  jejíž definičním oborem je množina  a pro nichž platí pro
každé   Konečně lze definovat funkci  předpisem:

 pro každé  Funkce  nyní splňuje podmínky 1.
a 2. a je určena jednoznačně. 

Definice. Nechť  je jednoznačně definovaná funkce splňující podmínky:

1. 
2. 

pro všechna  Funkci  pak nazveme součtem. Následně budeme definovat
binární oparaci " " na množině  vztahem

pro všechna 

Okamžitým důsledkem definice součtu přirozených čísel je následující tvrzení:

Věta. Pro všechna přirozená čísla  platí:

(A1) 

(A2) 

Důsledek. Pro všechna  platí 

Důkaz. Nechť  Protože  dostaneme:

a tudíž máme:  

Příklad. Ukažme, že 

Řešení.

g : ω → ω f : ω × ω → ω

h : ω × ω → ω m ∈ ω

h(m, 0) = g(m),

h(m,n+) = f(h(m,n),m) n ∈ ω.

m ∈ ω

pm : ω → ω

pm(0) = g(m),

pm(n+) = f(pm(n),m), n ∈ ω.

q ω

m ∈ ω, q(m) = pm. h : ω × ω → ω

h(m,n) = q(m)(n) = pm(n) n,m ∈ ω. h

□

A : ω × ω → ω

A(m, 0) = m,

A(m,n+) = A(m,n)+

m,n ∈ ω. A

+ ω

m + n = A(m,n)

m,n ∈ ω.

m,n

m + 0 = m,

m + n+ = (m + n)+.

m ∈ ω m + 1 = m+.

m ∈ ω. 1 = 0+,

m + 1 = m + 0+

= (m + 0)+   díky vlastnosti (A2)

= m+   díky vlastnosti (A1)

(1)

(2)

(3)

m + 1 = m+. □

2 + 2 = 4.



Definice. Nechť  je jednoznačně definovaná funkce splňující vlastnosti:

1. 
2. 

pro všechna  Funkci  pak nazveme součinem. Následně budeme definovat
binární operaci na množině  vztahem

pro všechna 

Věta. Pro všechna přirozená čísla  platí:

(M1) 

(M2) 

Důkaz. Je zřejmým důsledkem definice součinu. 

Věta (Asociativní zákon pro sčítání). Pro všechna přirozená čísla  a  platí:

Důkaz. Důkaz provedme matematickou indukcí podle  Nejdříve zvolme libovolně
přirozená čísla  a položme

(i) Ukažme, že 

Tedy 

(ii) Předpokládejme, že  a ukažme, že pak 

Ukázali jsme tedy, že  a tudíž  Dokázali jsme, že
 je induktivní podmnožinou množiny  a tedy  

2 + 2 = 2 + 1+   protože platí:  2 = 1+

= (2 + 1)+  díky vlastnosti (A2)

= (2+)+

= (3)+   protože  2+ = 3

= 4.

(4)

(5)

(6)

(7)

(8)

□

M : ω × ω → ω

M(m, 0) = 0,

M(m,n+) = M(m,n) + m

m,n ∈ ω. M

ω

m ⋅ n = M(m,n)

m,n ∈ ω.

m,n

m ⋅ 0 = 0,

m ⋅ n+ = m ⋅ n + m.

□

m,n p

m + (n + p) = (m + n) + p.

p.

m,n

I = {p ∈ ω : m + (n + p) = (m + n) + p}.

0 ∈ I.

m + (n + 0) = m + n   plyne z (A1)

= (m + n) + 0   plyne opět z (A1).

(9)

(10)

0 ∈ I.

p ∈ I p+ ∈ I.

m + (n + p+) = m + (n + p)+   v důsledku vlastnosti (A2)

= [m + (n + p)]+   v důsledku vlastnosti (A2)

= [(m + n) + p]+   neboť p ∈ I

= (m + n) + p+   v důsledku vlastnosti (A2).

(11)

(12)

(13)

(14)

m + (n + p+) = (m + n) + p+ p+ ∈ I.

I ω I = ω. □



Věta (Komutativní zákon pro sčítání). Pro každé  platí

Důkaz. Přecháme jako problém pro samostatnou přípravu.

Věta (Distributivní zákon). Pro každé  platí

Důkaz (náznak). Zvolme libovolně přirozená čísla  a . Dále položme

Nyní se dokáže, že množina  je induktivní množinou odkud plyne  

Věta (Asociativní zákon pro násobení). Pro každé  platí

Důkaz. Důkaz provedme matematickou indukcí podle  Nejdříve zvolme libovolně
přirozená čísla  a položme

Ukažme, že množina  je induktivní množinou. (i) Ukažme, že 

Tedy  (ii) Předpokládejme, že  a ukažme, že pak 

Tudíž platí:  a tedy  Dokázali jsme, že  je induktivní
podmnožinou množiny  a tedy  

Věta (Komutativní zákon pro násobení). Pro každé  platí 

Důkaz. Přecháme jako problém pro samostatnou přípravu.

Definice mocniny. Nechť  je je jednoznačně definovaná funkce, která
pro každé  přiřazuje číslo  takové, že

1.  a
2. .

Funkci  nazýváme mocninovou funkcí a číslo  se nazývá mocnina čísla  s
exponentem . Zavedme označení:  pro každé 

Je možné dokázat následující větu.

m,n ∈ ω

m + n = n + m.

□

m,n, p ∈ ω

m ⋅ (n + p) = m ⋅ n + m ⋅ p.

m n

I = {p ∈ ω : m ⋅ (n + p) = m ⋅ n + m ⋅ p}.

I I = ω. □

m,n, p ∈ ω

m ⋅ (n ⋅ p) = (m ⋅ n) ⋅ p.

p.

m,n

I = {p ∈ ω : m ⋅ (n ⋅ p) = (m ⋅ n) ⋅ p}.

I 0 ∈ I.

m ⋅ (n ⋅ 0) = m ⋅ 0   plyne z (M1)

= 0   plyne z (M1)

= (m ⋅ n) ⋅ 0   plyne z (M1).

(15)

(16)

(17)

0 ∈ I. p ∈ I p+ ∈ I.

m ⋅ (n ⋅ p+) = m ⋅ (n ⋅ p + n)   v důsledku vlastnosti (M2)

= m ⋅ (n ⋅ p) + m ⋅ n

= (m ⋅ n) ⋅ p + m ⋅ n   neboť p ∈ I

= (m ⋅ n) ⋅ p+   v důsledku vlastnosti (M2).

(18)

(19)

(20)

(21)

m ⋅ (n ⋅ p+) = (m ⋅ n) ⋅ p+ p+ ∈ I. I

ω I = ω. □

m,n ∈ ω m ⋅ n = n ⋅ m.

□

E : ω × ω → ω

m,n ∈ ω E(m,n) ∈ ω

E(m, 0) = 1

E(m,n+) = E(m,n) ⋅ m

E E(m,n) m

n mn = E(m,n) m,n ∈ ω.



Věta (Mocnina čísla  s exponentem ). Pro každé  platí:

(E1) ,

(E2) .

Uspořádání množiny 
Definice. Řekneme, že přirozené číslo  je menší než přirozené číslo , právě tehdy,
když 

Tvrzení. Nechť  je přirozené číslo. Pak

1. jestliže  pak ,
2. jestliže  a  pak .
3. jestliže  pak .
4. jestliže  a  pak .

Důkaz. Uvedené vlastnosti plynou z toho, že každé přirozené číslo  je tranzitivní
množinou a množina  je též tranzitivní množina.

Cvičení. Bez použití axiomu regularity dokažte, že pro každé  platí 

( Návod. Důkaz proveďte pomocí principu matematické indukce.

1. Definujte množinu  Cílem je ukázat, že 
2. Ukažte, že  (Využijte toho, že )
3. Předpokládejte, že pro nějaké  platí  (tj. ). Dokažte, že pak také

 (tj. ).
4. Pro důkaz kroku 3 postupujte sporem. Předpokládejte, že  Protože

 musí platit buď  nebo 
5. Ukažte, že oba případy vedou ke sporu s indukčním předpokladem  Využijte

faktu, že přirozená čísla jsou tranzitivní množiny (tj. pokud  pak ).

)

Definice. Pro každé  píšeme  právě tehdy, když  nebo 

Věta (Trichotomie). Pro každé  platí právě jedna z následujících podmínek:

Důkaz. Provádět jej nebudeme.

Cvičení. Dokažte, že pro každé  platí:

Cvičení. Předpokládejme, že . Ukažte, že jestliže , potom .

Věta. Uspořádaná dvojice  je lineárně uspořádaná množina.

m n m,n ∈ ω

m0 = 1

mn+
= mn ⋅ m

ω

m n

m ∈ n.

n

k ∈ n, k ⊆ n

a ∈ k k ∈ n, a ∈ n

k ∈ ω, k ⊆ ω

a ∈ k k ∈ ω, a ∈ ω

n

ω □

n ∈ ω n ∉ n.

I = {n ∈ ω : n ∉ n}. I = ω.

0 ∈ I. 0 = ∅.

k ∈ ω k ∈ I k ∉ k

k+ ∈ I k+ ∉ k+

k+ ∈ k+.

k+ = k ∪ {k}, k+ ∈ k k+ = k.

k ∉ k.

x ∈ k, x ⊆ k

m,n ∈ ω m ∈–– n m ∈ n m = n.

m,n ∈ ω

m ∈ n  nebo  m = n  nebo  n ∈ m.

□

m,n ∈ ω

m ∈ n ⟺ m ⊂ n.

n, a ∈ ω n ∈ a n+ ∈
––

a

(ω, ∈
––

)



Náznak důkazu. Je třeba ověřit, že relace  na množině  je reflexivní, antisymetrická,

tranzitivní a že platí trichotomie.

1. Reflexivita: Pro každé  platí , tedy .

2. Antisymetrie: Nechť  a . Pokud , pak musí platit  a

. To by ale znamenalo  a . Protože  je tranzitivní a , platí
. Protože , je i . Protože  je tranzitivní, z  plyne .

Podobně z  plyne . Pokud  a , pak  a , což
implikuje . To je spor s předpokladem . Tedy musí platit .
(Alternativně lze využít  a tranzitivitu ).

3. Tranzitivita: Nechť  a .

Pokud  a , pak , tedy .

Pokud  a , pak , tedy .

Pokud  a , pak , tedy .

Pokud  a . Protože  je přirozené číslo, je tranzitivní. Tedy z 
plyne . Tedy .

4. Linearita (Trichotomie): Pro libovolné  podle Věty o trichotomii platí
právě jedna z možností:  (tj. ), , nebo  (tj. ). To
znamená, že platí buď  nebo .

Věta (Princip dobrého uspořádání). Nechť  je neprázdná podmnožina množiny 
Pak v množině  existuje nejmenší prvek. To znamená, že existuje element  takový,
že pro každé  platí 

Důkaz. Nechť  je neprázdná podmnožina množiny  Sporem předpokládejme, že
množina  nemá nejmenší prvek. Nyní položme

Protože podle předpokladu v množině  neexistuje nejmenší prvek, je

Ukažme, že  je induktivní množinou.

(i) Ukažme, že  Za tím účelem dokažme:

Položme  Dokažme nyní, že  je induktivní množinou. Je zřejmé,

že  Dále předpokládejme, že , tj.  Pak je buď  nebo  V

prvním případě neboť z definice následovníka plyne  A tedy  V
druhém případě je současně  a  Tedy  Tudíž v obou případech

∈
––

ω

n ∈ ω n = n n ∈
––
n

m ∈
––
n n ∈

––
m m ≠ n m ∈ n

n ∈ m m ∈ n n ∈ m ω n ∈ ω

n ⊆ ω m ∈ n m ∈ ω m n ∈ m n ⊆ m

m ∈ n m ⊆ n m ∈ n n ∈ m m ⊆ n n ⊆ m

m = n m ≠ n m = n

n ∉ n ∈

k ∈
––
m m ∈

––
n

k = m m = n k = n k ∈
––
n

k = m m ∈ n k ∈ n k ∈
––
n

k ∈ m m = n k ∈ n k ∈
––
n

k ∈ m m ∈ n n k ∈ m ∈ n

k ∈ n k ∈
––
n

m,n ∈ ω

m ∈ n m < n m = n n ∈ m n < m

m ∈
––
n n ∈

––
m

□

A ω.

A a ∈ A

b ∈ A a ∈
––
b.

A ω.

A

I = {n ∈ ω : n ∈
––

a pro každé a ∈ A}.

A

I ∩ A = ∅. (*)

I

0 ∈ I.

0 ∈–– m pro každé m ∈ ω. (**)

J = {m ∈ ω : 0 ∈
––

m}. J

0 ∈ J. m ∈ J 0 ∈
––

m. m = 0 0 ∈ m.

m ∈ m+. 0 ∈ m+.

0 ∈ m m ∈ m+. 0 ∈ m+.



platí  To znamená, že  Tedy  je induktivní množinou a tedy 

Dokázali jsme tedy platnost tvrzení (**).

Z tvrzení (**) plyne, že pro každé  platí  To znamená, že 

(ii) Nyní předpokládejme, že pro nějaké  platí  a ukažme, že pak 
Podle předpokladu tedy paltí  pro každé  Podle výše uvedeného cvičení pak

pro každé  platí  Tedy  Dokázali jsme tedy, že  je induktivní

množinou. Tedy 

Tedy existuje  takové, že  To je v rozporu s tvrzením (*). Tedy předpoklad, že
množina  nemá nejmenší prvek, je nepravdivý. 

Označení. Nechť  Potom pokud je  menší než , píšeme  Pokud je
 menší nebo rovno , píšeme  Tj. pro  platí:

a

0 ∈
––

m+. m+ ∈ J. J J = ω.

a ∈ A 0 ∈
––

a. 0 ∈ I.

n ∈ ω n ∈ I n+ ∈ I.

n ∈–– a a ∈ A.

a ∈ A n+ ∈
––
a. n+ ∈ I. I

I = ω.

n ∈ ω n ∈ A.

A □

m,n ∈ ω. m n m < n.

m n m ≤ n. m,n ∈ ω

m < n ⟺ m ∈ n,

m ≤ n ⟺ m ∈
––

n.


